曲面与极值总结

曲面的切平面和法线

显示表示 z = f ( x , y ) z=f(x,y) z=f(x,y)

  • 切平面: z = z 0 + ∂ f ∂ x ( x 0 , y 0 ) ( x − x 0 ) + ∂ f ∂ y ( x 0 , y 0 ) ( y − y 0 ) z=z_0+\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0) z=z0+xf(x0,y0)(xx0)+yf(x0,y0)(yy0)

    • z = z 0 + D f ( x 0 , y 0 ) ( x − x 0 , y − y 0 ) z=z_0+Df(x_0,y_0)(x-x_0,y-y_0) z=z0+Df(x0,y0)(xx0,yy0)相当于在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)泰勒展开一阶
  • 法向量: n = ( ∂ f ∂ x , ∂ f ∂ y , − 1 ) n=\big(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},-1\big) n=(xf,yf,1),即上式中 ( x − x 0 ) , ( y − y 0 ) , ( z − z 0 ) (x-x_0),(y-y_0),(z-z_0) (xx0),(yy0),(zz0)前的参数,使得内积为 0 0 0

  • 法线: ( x 0 , y 0 , z 0 ) + k n (x_0,y_0,z_0)+kn (x0,y0,z0)+kn,或者写作

x − x 0 ∂ f ∂ x ( x 0 , y 0 ) = y − y 0 ∂ f ∂ y ( x 0 , y 0 ) = z − z 0 − 1 \frac{x-x_0}{\frac{\partial f}{\partial x}(x_0,y_0)}=\frac{y-y_0}{\frac{\partial f}{\partial y}(x_0,y_0)}=\frac{z-z_0}{-1} xf(x0,y0)xx0=yf(x0,y0)yy0=1zz0

隐式表示 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0

  • 切平面: ∂ F ∂ x ( x − x 0 ) + ∂ F ∂ y ( y − y 0 ) + ∂ F ∂ z ( z − z 0 ) = 0 \frac{\partial F}{\partial x}(x-x_0)+\frac{\partial F}{\partial y}(y-y_0)+\frac{\partial F}{\partial z}(z-z_0)=0 xF(xx0)+yF(yy0)+zF(zz0)=0
    • D F ( x 0 , y 0 , z 0 ) ( x − x 0 , y − y 0 , z − z 0 ) = 0 DF(x_0,y_0,z_0)(x-x_0,y-y_0,z-z_0)=0 DF(x0,y0,z0)(xx0,yy0,zz0)=0
    • ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)的微分作用在增量 ( x − x 0 , y − y 0 , z − z 0 ) (x-x_0,y-y_0,z-z_0) (xx0,yy0,zz0)上不会改变 F F F
    • 那么在这一平面上上近似于曲面 F = 0 F=0 F=0
  • 法向量: n = ( ∂ F ∂ x , ∂ F ∂ y , ∂ F ∂ z ) n=\big(\frac{\partial F}{\partial x},\frac{\partial F}{\partial y},\frac{\partial F}{\partial z}\big) n=(xF,yF,zF)
    • F F F的梯度, F F F沿梯度上升最快,因此与 F F F恒等于 0 0 0正交
  • 法线:

x − x 0 ∂ f ∂ x ( x 0 , y 0 ) = y − y 0 ∂ f ∂ y ( x 0 , y 0 ) = z − z 0 ∂ f ∂ z ( x 0 , y 0 ) \frac{x-x_0}{\frac{\partial f}{\partial x}(x_0,y_0)}=\frac{y-y_0}{\frac{\partial f}{\partial y}(x_0,y_0)}=\frac{z-z_0}{\frac{\partial f}{\partial z}(x_0,y_0)} xf(x0,y0)xx0=yf(x0,y0)yy0=zf(x0,y0)zz0

参数表示 ( x , y , z ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) = F ( u , v ) (x,y,z)=(x(u,v),y(u,v),z(u,v))=F(u,v) (x,y,z)=(x(u,v),y(u,v),z(u,v))=F(u,v)

  • 切平面参数表示:
    x − x 0 = ∂ x ∂ u ( u 0 , v 0 ) ( u − u 0 ) + ∂ x ∂ v ( u 0 , v 0 ) ( v − v 0 ) y − y 0 = ∂ y ∂ u ( u 0 , v 0 ) ( u − u 0 ) + ∂ y ∂ v ( u 0 , v 0 ) ( v − v 0 ) z − z 0 = ∂ z ∂ u ( u 0 , v 0 ) ( u − u 0 ) + ∂ z ∂ v ( u 0 , v 0 ) ( v − v 0 ) x-x_0=\frac{\partial x}{\partial u}(u_0,v_0)(u-u_0)+\frac{\partial x}{\partial v}(u_0,v_0)(v-v_0)\\ y-y_0=\frac{\partial y}{\partial u}(u_0,v_0)(u-u_0)+\frac{\partial y}{\partial v}(u_0,v_0)(v-v_0)\\ z-z_0=\frac{\partial z}{\partial u}(u_0,v_0)(u-u_0)+\frac{\partial z}{\partial v}(u_0,v_0)(v-v_0) xx0=ux(u0,v0)(uu0)+vx(u0,v0)(vv0)yy0=uy(u0,v0)(uu0)+vy(u0,v0)(vv0)zz0=uz(u0,v0)(uu0)+vz(u0,v0)(vv0)

    • x , y , z x,y,z x,y,z每个方向关于 ( u , v ) (u,v) (u,v)求切线 (一阶泰勒展开)
  • 上式对于 X = ( x , y , z ) X=(x,y,z) X=(x,y,z)也可以写成: X − X 0 = ∂ X ∂ u ( u 0 , v 0 ) ∗ k 1 + ∂ X ∂ v ( u 0 , v 0 ) ∗ k 2 X-X_0=\frac{\partial X}{\partial u}(u_0,v_0)*k_1+\frac{\partial X}{\partial v}(u_0,v_0)*k_2 XX0=uX(u0,v0)k1+vX(u0,v0)k2

  • 通过叉乘求出法向量为( i , j , k i,j,k i,j,k分别为 x , y , z x,y,z x,y,z的基,其系数即该坐标分量的大小)

n = ∣ i j k ∂ x ∂ u ∂ y ∂ u ∂ z ∂ u ∂ x ∂ v ∂ y ∂ v ∂ z ∂ v ∣ n= \begin{vmatrix} i & j & k\\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u}\\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} n=iuxvxjuyvykuzvz

  • 切平面: < n , X > = 0 \left< n,X\right>=0 n,X=0
  • 对于一般的情况,法空间 N ( J F T ( u 0 , v 0 ) ) N(JF^T(u_0,v_0)) N(JFT(u0,v0)),即切空间 R ( J F ( u 0 , v 0 ) ) R(JF(u_0,v_0)) R(JF(u0,v0))的正交补

简单总结:

  • 显式表达可以看作隐式表达,隐式表达下:

    • 法向量为梯度向量,对于坐标求偏导
    • 切平面方程由法向量得到
  • 参数表达下:

    • 切平面的参数方程,对于参数求偏导

    • 根据维数:

      • 法向量关于参数 u , v u,v u,v对应的 D u X ( u ) , D v X ( v ) D_uX(u),D_vX(v) DuX(u),DvX(v)求叉乘

      • 法平面由切平面求正交补得到(解零空间)

    • 切平面方程可由法空间得到

  • 两者之间有明显的对偶关系

极值

极值定义

  • 存在小邻域内所有点函数值都小于该点的函数值为极大值(根据小于或小于等于判断是否严格)
  • 只能在内点讨论极值

临界点

  • ∇ f ( x 0 ) = d f ( x 0 ) = 0 \nabla f(x_0)=df(x_0)=0 f(x0)=df(x0)=0,即一阶微分为0,类似一元函数导数为0

非退化临界点

  • H f ( x 0 ) H_f(x_0) Hf(x0)可逆

  • H f ( x 0 ) H_f(x_0) Hf(x0)正定即极小值,负定即极大值

  • 都不是则有正、负特征值,该点为鞍点

  • 由泰勒展开得到上述结论: f ( x 0 + v ) = f ( x ) + v T H f ( x 0 ) v + o ( ∥ v ∥ 2 ) f(x_0+v)=f(x)+v^TH_f(x_0)v+o(\Vert v\Vert^2) f(x0+v)=f(x)+vTHf(x0)v+o(v2)

一般函数求极值:

  • 解法一:

    • 求出所有临界点
    • 如果临界点都是非退化临界点则直接求 H e s s e Hesse Hesse矩阵判断正定性(顺序主子式为正数)
    • 对于退化临界点讨论周围的点的 H e s s e Hesse Hesse矩阵
  • 解法二:

条件极值

在满足 F k ( x ) = 0 , k = 1 , 2 , . . . , n F_k(x)=0,k=1,2,...,n Fk(x)=0,k=1,2,...,n的所有 x ∈ R m x\in \R ^m xRm中求 f ( x ) f(x) f(x)的极值

若对于 F = ( F 1 , F 2 , . . . , F n ) F=(F_1,F_2,...,F_n) F=(F1,F2,...,Fn) D F ( x ∗ ) DF(x^*) DF(x)满行秩则可以根据隐函数定理得到 F ( x ) = 0 F(x)=0 F(x)=0 m − n m-n mn维曲面

必要条件

  • ∇ f ( x ∗ ) ⊥ ker ⁡ D F ( x ∗ ) \nabla f(x^*)\perp \ker DF(x^*) f(x)kerDF(x)
    • f ( x ) f(x) f(x)增长方向与 F ( x ) = 0 F(x)=0 F(x)=0曲面的切平面垂直
    • 否则可以沿 ∇ f ( x ∗ ) \nabla f(x^*) f(x)在切平面的投影方向得到更大值)
  • D F ( x ∗ ) DF(x^*) DF(x)满行秩则 ∇ F k ( x ∗ ) \nabla F_k(x^*) Fk(x) ker ⁡ D F ( x ∗ ) \ker DF(x^*) kerDF(x)一组基
  • ∇ f ( x ∗ ) = ∑ λ i ∇ F i ( x ∗ ) \nabla f(x^*)=\sum \lambda_i\nabla F_i(x^*) f(x)=λiFi(x)

对于必要条件,可以使用拉格朗日乘子法

  • L ( x , λ 1 , . . . , λ n ) = f ( x ) − λ 1 F 1 ( x ) − . . . − λ n F n ( x ) L(x,\lambda_1,...,\lambda_n)=f(x)-\lambda_1F_1(x)-...-\lambda_nF_n(x) L(x,λ1,...,λn)=f(x)λ1F1(x)...λnFn(x)

  • ( x ∗ , λ 1 ∗ , . . . , λ n ∗ ) (x^*,\lambda_1^*,...,\lambda_n^*) (x,λ1,...,λn) L L L的临界点:

    • 0 = ∇ L ( x ∗ , λ 1 ∗ , . . . , λ n ∗ ) = ( ∇ f ( x ∗ ) − ∑ k = 1 n λ k ∇ F k ( x ∗ ) − F 1 ( x ∗ ) ⋮ − F n ( x ∗ ) ) 0=\nabla L(x^*,\lambda_1^*,...,\lambda_n^*)=\begin{pmatrix}\nabla f(x^*)-\sum_{k=1}^n\lambda_k\nabla F_k(x^*)\\-F_1(x^*)\\ \vdots \\ -F_n(x^*)\end{pmatrix} 0=L(x,λ1,...,λn)=f(x)k=1nλkFk(x)F1(x)Fn(x)
    • 上一行的列向量中,第一个元素是 m m m维列向量,即对 x x x求偏导在 x ∗ x^* x处取,实际上是对 x 1 . . . x m x_1...x_m x1...xm m m m个偏导分别为0
    • ∂ x L ( x ∗ , λ ) \partial_{x} L(x^*,\lambda) xL(x,λ) L L L ( x ∗ , λ ) (x^*,\lambda) (x,λ)处的微分,是 1 ∗ m 1*m 1m J a c o b i Jacobi Jacobi矩阵,是 ∇ L \nabla L L m m m行对应列向量的转置,是 L L L分别对前 m m m个分量求偏导数组合起来的列向量
  • H = d 2 f ( x ∗ ) − ( λ 1 , . . . , λ n ) D 2 F ( x ∗ ) H=d^2f(x^*)-(\lambda_1,...,\lambda _n)D^2F(x^*) H=d2f(x)(λ1,...,λn)D2F(x)

    • F ( x ∗ ) F(x^*) F(x)的切平面上 H H H正定为极小值,负定为极大值,
    • 同时有正负特征值时不是极值点
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值