NetApp FAS500f 云集成统一存储平台,充分发挥混合云的潜能

拥有用于医学成像和研究、媒体和娱乐制作、EDA 以及备份或归档工作负载的容量密集型应用程序?全闪存 FAS500f 是满足您对效率和精简性要求的理想之选

NetApp FAS 系列

针对容量进行了优化的 FAS 系列产品因其功能的多样性而受到客户的青睐。使用客户信任度排名第一的云集成统一存储平台构建您的数据中心,该平台可助您轻松部署和运维。FAS 有六种型号,每种型号均根据不同需求量身定制。

NetApp FAS500f 规格

每个 FAS 系列最多可为每个集群容纳 24 个节点(12 个 HA 对)。

• 每个 HA 对的最大原始容量:734 TB

• 每个 HA 对的最大驱动器数量:48 个

• NAS 横向扩展:1-24 个节点(12 个 HA 对)

• SAN 横向扩展:1-12 个节点(6 个 HA 对)

• 集群的最大原始容量:8.8 PB

• 控制器机箱外形规格:2U

• 操作系统版本:ONTAP 9.8 RC1 及更高版本

• 支持的存储协议:NVMe-oF、FC、FCoE、iSCSI、NFS、pNFS、CIFS/SMB、Amazon S3

• Median power consumption: 491 watts

ONTAP:选择客户信赖的排名第一的生态系统

ONTAP 是经过客户验证的排名第一的操作系统,可为混合云部署提供安全性、精简性和可扩展性。

借助 Simplicity365,全年无休地简化数据管理

一次学习,终身受益。借助 NetApp Simplicity365,我们减轻了跨边缘、核心和混合云部署的一线 IT 团队的沉重负担。

产品功能与特性

1、简单 - 易于设置

迈出进入云的第一步可能比您想象的要容易。借助 NetApp FAS 系列,只需几分钟即可配置自己的存储,并可通过实施 NetApp 经验证的效率方法来降低成本。

2、安全保障 - 保持灵活性

如果您已经在与公有云供应商合作,我们这儿有一个好消息:您可以将 NetApp 的混合云与您在任何公有云上的现有云轻松集成。我们强大的报告功能将帮助您在未来进一步优化存储。

3、值得信赖 - 安全,无处不在

我们会把握每一次保护数据的机会,确保数据在传输中或空闲时始终安然无虞。无论数据存储在云中还是内部,借助 ONTAP 客户信赖的安全功能,每个数据点都是十分安全的。

4、容易 - 轻松迁移

ONTAP 生态系统拥有您顺利迁移所需的一切,包括 NetApp SnapMirror。此软件可通过数据复制在内部和云之间专业地迁移数据。

5、更智能 - 风险防范

通过从 NetApp Active IQ Unified Manager 注册警报来降低风险,减少损失时间。每当系统检测到风险因素时,都会收到问题防范提示(基于我们用户群的集体智慧)。

它便于用户使用,信息板、自定义和安全性令人满意。

“最有价值的地方在于 NAS 功能和 NetApp 的卓越支持。我们主要用此解决方案来进行文件共享、虚拟化和数据库存储。我使用此解决方案已有七年时间了。它非常稳定,还具有可扩展性。您可以尽可能多地扩展。我们的组织中大约有500 个最终用户。我一定会把它推荐给有意向使用此解决方案的其他人。”

NetApp FAS 客户:IT 经理

海运公司,拥有 51-200 名员工

充分发挥混合云的潜能

无论数据位于何处,均可通过 NetApp 的混合云服务将其连接起来。

改变看待数据的角度

借助 ONTAP,只需单击几下鼠标,即可从数据中获得有价值的见解。

只需几分钟即可完成部署

这些 FAS 型号的设置非常简单,从开始到结束只需不到十分钟的时间。

根据需要进行纵向和横向扩展

在分布式企业的主要位置和分支位置之间保持无缝的 IT 连接。

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值