Elasticsearch——分布式搜索引擎01(索引库、文档、RestAPI、RestClient、拼音分词器、IK分词器)

备注:有误还望指正,本博客仅供学习参考,一起加油!

一、初识 elesticsearch

1.1 简介

  Elasticsearch是一个基于 Lucene搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elasticsearch用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

  Elasticsearch 结合kibana、Logstash、Beats,也就是 elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域;而 elasticsearch 是 elastic stack 的核心,负责存储、搜索、分析数据。

  elasticsearch 底层是基于lucene来实现的。Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。Lucene 的优缺点如下:

Lucene 的优点

  • 易扩展
  • 高性能(基于倒排索引)

Lucene 的缺点

  • 只限于 Java 语言开发
  • 学习曲线陡峭(学习成本大)
  • 不支持水平扩展

ElasticSearch 相对于 Lucene 的优势

  • 支持分布式,可水平扩展
  • 提供 Restful 接口,可被任何语言调用

相关面试题总结

1)什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能。

2)什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch。

3)什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API。

1.2 倒排索引(重点)

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1 正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

  如果是根据id查询,那么直接走索引,查询速度非常快。但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

  逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,查询效率就会非常低。

1.2.2 倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):文档数据用户搜索的数据,利用 某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

备注:虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3 正向和倒排(对比)

正向索引和倒排索引的对比:

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档(每行的数据),然后判断文档中是否包含所需要的词条(关键字),是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到包含词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

两种索引的优缺点如下:

正向索引 优点

  • 可以给多个字段创建索引。
  • 根据索引字段搜索、排序速度非常快。

正向索引 缺点

  • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描(索引会失效),查询速度当数据量大时变慢。

倒排索引 优点

  • 根据词条搜索、模糊搜索时,速度非常快。

倒排索引 缺点

  • 只能给词条创建索引,而不是字段。
  • 无法根据字段做排序。

1.3 es 的其它概念

1.3.1 文档和字段

  elasticsearch 是面向 文档(Document) 存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为 json格式 后存储在 elasticsearch 中;而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.3.2 索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;


因此,我们可以把索引当做是数据库中的表(es中索引也叫索引库)。可以将索引比作数据库的

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有 映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。映射对应数据库中表的约束信息

1.3.3 mysql 和 elasticsearch 比较(重点)

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构约束(Schema)
SQLDSLDSL 是 elasticsearch 提供的 JSON风格 的HTTP请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长之处:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性。
  • Elasticsearch:擅长海量数据的搜索、分析、计算。

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现。
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现。
  • 两者再基于某种方式,实现数据的同步,保证一致性。(比如 RabbitMQ)

1.4 安装 ES、Kibana

参考链接:Docker 安装 ES、Kibana

1.5 使用 kibana

1.5.1 Dev Tools

kibana中提供了一个DevTools界面:往下拉,可以看到Dev Tools,这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

在这里插入图片描述

1.5.2 默认分词器 standard

以下DSL就是用来测试分词效果的:

语法提示:

  • GET:请求方式。
  • /_analyze:请求路径,这里省略了http://192.168.150.101:9200,由kibana帮我们补充请求参数,json风格。
  • analyzer:分词器类型,这里是默认的 standard 分词器。
  • text:要分词的内容。

1.5.3 IK分词器

安装参考:Docker 安装 IK分词器


IK分词器包含两种模式

  • ik_smart:最少切分(粗粒度)
  • ik_max_word:最细切分(细粒度)



分词器常见面试问题

1)分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

2)IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

3)IK分词器如何扩展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加扩展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

1.5.4 扩展词典

  随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表(词典)中并不存在。比如:“奥力给”,“刷脸” 等。大家可以测试text为 “Java学科,奥力给!” 的分词效果。

所以分词器的词库也需要不断的更新,IK分词器提供了扩展词库的功能。

1)打开IK分词器config目录:(这里使用的是数据卷的挂载)

[root@VM-16-16-centos ~]# cd ../var/lib/docker/volumes/es-config/_data/analysis-ik
[root@VM-16-16-centos analysis-ik]# ll
total 8260
-rw-rw---- 1 lighthouse root 5225922 Feb 15 09:21 extra_main.dic
-rw-rw---- 1 lighthouse root   63188 Feb 15 09:21 extra_single_word.dic
-rw-rw---- 1 lighthouse root   63188 Feb 15 09:21 extra_single_word_full.dic
-rw-rw---- 1 lighthouse root   10855 Feb 15 09:21 extra_single_word_low_freq.dic
-rw-rw---- 1 lighthouse root     156 Feb 15 09:21 extra_stopword.dic
-rw-rw---- 1 lighthouse root     625 Feb 15 09:21 IKAnalyzer.cfg.xml
-rw-rw---- 1 lighthouse root 3058510 Feb 15 09:21 main.dic
-rw-rw---- 1 lighthouse root     123 Feb 15 09:21 preposition.dic
-rw-rw---- 1 lighthouse root    1824 Feb 15 09:21 quantifier.dic
-rw-rw---- 1 lighthouse root     164 Feb 15 09:21 stopword.dic
-rw-rw---- 1 lighthouse root     192 Feb 15 09:21 suffix.dic
-rw-rw---- 1 lighthouse root     752 Feb 15 09:21 surname.dic

2)在IKAnalyzer.cfg.xml配置文件内容添加:(保存退出)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 -->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典-->
        <entry key="ext_stopwords"></entry>
        <!--用户可以在这里配置远程扩展字典 -->
        <!-- <entry key="remote_ext_dict">words_location</entry> -->
        <!--用户可以在这里配置远程扩展停止词字典-->
        <!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

奥利给
刷脸

4)重启 es

#重启es容器
docker restart es

# 查看 日志(可选)
docker logs -f es


日志中已经成功加载IKAnalyzer.cfg.xml配置文件,也就加载了ext.dic文件。

5)测试效果

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

1.5.5 停用词词典

  在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 -->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典-->
        <entry key="ext_stopwords">stopword.dic</entry>
        <!--用户可以在这里配置远程扩展字典 -->
        <!-- <entry key="remote_ext_dict">words_location</entry> -->
        <!--用户可以在这里配置远程扩展停止词字典-->
        <!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

3)在 stopword.dic 添加停用词(没有文件就创建文件)

暴力

4)重启elasticsearch

# 重启服务
docker restart es
docker restart kibana

# 查看 日志
docker logs -f es

日志中已经成功加载stopword.dic配置文件。

5)测试效果:

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

1.5.6 拼音分词器(自动补全查询基础技术)

要实现根据字母做补全,就必须对文档按照拼音分词。
elasticsearch-analysis-pinyin-7.12.1.zip 安装包拼音分词器安装

1)测试用法如下

2)自定义分词器:(重点)
  默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音(rujia),需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

声明自定义分词器的语法如下

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
		  "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"  //搜索时使用中文分词器
      }
    }
  }
}

测试:

注意:拼音分词器适合在创建倒排索引时使用,不要在搜索的时候使用。

总结

如何使用拼音分词器?

  • ①下载pinyin分词器
  • ②解压并放到elasticsearch的plugin目录
  • ③重启es容器即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分:
  • character filter
  • tokenizer
  • filter

拼音分词器注意事项有哪些?

  • 为了避免搜索到同音字(按照拼音搜索到同音字),搜索时不要使用拼音分词器

二、索引库操作

索引库(相当于表)中有多个json文档(相当于表中的记录)】

2.1 mapping 映射属性

mapping 是对索引库中文档的约束,常见的mapping属性包括:

属性解释
type字段数据类型,常见的简单类型有:
  - 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
  - 数值:long、integer、short、byte、double、float、
  - 布尔:boolean
  - 日期:date
  - 对象:object
index是否创建倒排索引,默认为true
analyzer使用哪种分词器
properties该字段的子字段

例如下面的 json 文档:

{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "Java讲师,奥里给!",
    "email": "cb@ccbx.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

对应的每个字段映射(mapping):(重点理解

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2 索引库的 CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

2.2.1 创建索引库和映射

基本语法

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式

// 创建索引库和映射
PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": false
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

示例

PUT /ccbx
{
  "mappings": {
    "properties": {
      "info":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email":{
        "type": "keyword",
        "index": false
      },
      "name":{
        "type": "object",
        "properties": {
          "firstName":{
            "type":"keyword",
            "index":true
          },
          "lastName":{
            "type":"keyword",
            "index":true
          }
        }
      }
    }
  }
}

结果如下

2.2.2 查询索引库

基本语法

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

格式

//查询索引库
GET /索引库名

示例

2.2.3 修改索引库

  倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此 索引库一旦创建,无法修改mapping

  虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "指定的类型"
    }
  }
}

示例

2.2.4 删除索引库

语法:

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式:

//删除索引库
DELETE /索引库名

在kibana中测试:

#创建一个索引库和映射
PUT /test-01
{
  "mappings": {
    "properties": {
      "name":{
        "type": "text",
        "analyzer": "ik_smart"
      }
    }
  }
}

#查询索引库
GET test-01

#删除索引库
DELETE /test-01

三、文档操作

类似于向 MySQL 数据库的表中添加数据记录。

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

3.1 新增文档

语法:

//新增文档
POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

示例:

// 新增文档
POST /ccbx/_doc/1
{
  "email":"123@qq.com",
  "info":"Java讲师,有钱途",
  "isMarried":true,
  "name":{
    "firstName":"张",
    "lastName":"良"
  }
}

响应:

3.2 查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

3.2.1 根据Id查询文档

语法:

GET /{索引库名称}/_doc/{id}

通过 kibana 查看数据:

GET /ccbx/_doc/1

查看结果:

3.2.2 查询所有文档

语法1: GET /{索引库名称}/_search

语法2:

GET /{索引库名称}/_search
{
  "query": {
    "match_all": {}
  }
}

演示

3.3 删除文档

删除使用 DELETE 请求,同样,需要根据id进行删除:

语法: DELETE /{索引库名}/_doc/id值

示例:
在这里插入图片描述

3.4 修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

3.4.1 全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

示例:

PUT /ccbx/_doc/1
{
    "info": "高级Java讲师",
    "email": "chu@ccbx.cn",
    "name": {
        "firstName": "张",
        "lastName": "良良"
    }
}

3.4.2 增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

#增量修改
POST /ccbx/_update/1
{
  "doc":{
    "email":"zhangliang@qq.com"
  }
}

四、RestAPI(案例演示)

  ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:Rest Client

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client(本次学习使用的版本)

4.1 Demo工程

Rest API小案例下载链接

4.1.1 导入数据

1)首先创建数据库,字符集选择 utf8mb4。

2)导入下载资料提供的数据库数据:tb_hotel.sql 文件,其数据结构如下:

CREATE TABLE `tb_hotel` (
  `id` bigint(20) NOT NULL COMMENT '酒店id',
  `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',
  `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',
  `price` int(10) NOT NULL COMMENT '酒店价格;例:329',
  `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',
  `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',
  `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',
  `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',
  `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',
  `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',
  `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',
  `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.1.2 导入项目

3)导入下载的项目:hotel-demo,项目结构如下:

注意:maven 配置文件的位置要替换成自己本地的!!!

4.1.3 mapping 映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用 ik_max_word

酒店数据的索引库结构:

PUT /hotel
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword",
        "copy_to": "all"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度。
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索。
  • copy_to:字段拷贝;将当前字段的值拷贝到指定字段。

地理坐标说明:

4.1.4 初始化 RestClient

  在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient.java的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的 RestHighLevelClient 依赖:

<!-- 引入 elasticsearch 依赖 -->
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties>
    <java.version>1.8</java.version>
    <!-- 覆盖默认的版本号 -->
    <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3)初始化RestHighLevelClient,初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.92.66:9200")
));

这里为了单元测试方便,我们创建一个测试类 HotelIndexTest.java,然后将初始化的代码编写在@BeforeEach方法中:

public class HotelIndexTest {

    private RestHighLevelClient client;

    //只能用junit5的依赖,所有crud测试方法之前执行的
    @BeforeEach
    void setUp() {
    	//IP地址替换成自己服务器的IP和端口号
        this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://192.168.92.66:9200")));
    }
    
    //tearDown方法用来释放资源,在所有crud测试方法之后执行的
    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

4.2 创建索引库

创建索引库的API如下:

代码分为三步:

  • 1、创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 2、添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3、发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

  在hotel-demo的com.softeem.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package com.softeem.hotel.constants;

/**
 * @Description 定义Mapping映射的 JSON 字符串常量。
 * @Author cb
 * @Date 2022-02-15 22:11
 **/
public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test
void createHotelIndex() throws IOException {
    // 1、创建 Request 对象 (hotel 是索引库名称)
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2、准备请求的参数:DSL 语句(下列静态导入该常量 MAPPING_TEMPLATE)
    //注意:
    //  正常的import声明从包中导入类,因此可以在没有包引用的情况下使用它们。
    //  类似地,静态导入声明从类中导入静态成员,并允许它们在没有类引用的情况下使用。
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3、发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

静态导入常量:import static com.softeem.hotel.constants.HotelConstants.MAPPING_TEMPLATE;

4.3 删除索引库

删除索引库的DSL语句非常简单:

//删除索引库 hotel
DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

4.4 判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

// 查询索引库 hotel
GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

4.5 总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它时候是无参)
  • 发送请求。调用RestHighLevelClient.indices().xxx()方法,xxx是create、exists、delete。

五、RestClient 操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
@SpringBootTest
public class HotelDocumentTest {

    @Autowired
    private IHotelService hotelService;

    private RestHighLevelClient client;

    //只能用junit5的依赖,所有crud测试方法之前执行的
    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(HttpHost.create("http://http://192.168.92.66:9200")));
    }

    //tearDown方法用来释放资源,在所有crud测试方法之后执行的
    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }

}

5.1 新增文档

我们要将数据库的酒店数据查询出来,写入elasticsearch中。

5.1.1 索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {
    @TableId(type = IdType.INPUT)
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String longitude;
    private String latitude;
    private String pic;
}

与我们的索引库结构存在差异:

  • longitude 和 latitude 需要合并为 location

因此,我们需要定义一个新的类型,与索引库结构吻合:

@Data
@NoArgsConstructor
public class HotelDoc {

    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;

	//通过传入Hotel对象从二构建HotelDoc对象
    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}

5.1.2 语法说明

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

对应的java代码如图:

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求

变化的地方在于,这里直接使用 client.xxx() 的API,不再需要 client.indices()了。

5.1.3 完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
  • hotel对象 需要转为 HotelDoc对象
  • HotelDoc 需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel
  • 2)将Hotel封装为HotelDoc
  • 3)将HotelDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testAddDocument() throws IOException {
    // 1.根据id查询节点数据
    Hotel hotel = hotelService.getById(415659L);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将HotelDoc转为json格式
    String jsonData = JSON.toJSONString(hotelDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 2.准备Json 文档
    request.source(jsonData, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

5.2 查询文档

5.2.1 语法说明

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

  可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化

5.2.2 完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "415659");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();
    System.out.println(json);

    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

5.3.删除文档

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "415659");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

5.4 修改文档

5.4.1 语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增。
  • 增量修改:修改文档中的指定字段值。

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。

增量修改代码示例如图

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

5.4.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "415659");
    // 2.准备请求参数
    request.doc(
            "price", "999",
            "starName", "皇冠"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

5.5 批量导入文档

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据
  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  • 利用 JavaRestClient 中的BulkRequest批处理,实现批量新增文档

5.5.1.语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

其中提供了一个add方法,用来添加其他请求:

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为 client.bulk() 方法

示例:

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

5.5.2 完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testBulkRequest() throws IOException{
    //批量查询酒店数据
    List<Hotel> hotelList = hotelService.list();

    // 1.创建Bulk请求
    BulkRequest request = new BulkRequest();
    // 2.添加要批量提交的请求:这里添加了两个新增文档的请求;
    for (Hotel hotel : hotelList) {
        //2.1 转换为文档类型 HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        //2.2 创建新增文档的Request对象(方法连调的时候注意source重载方法别调用错了)
        IndexRequest indexRequest = new IndexRequest("hotel").id(hotelDoc.getId().toString());
        indexRequest.source(JSON.toJSONString(hotelDoc),XContentType.JSON);
        request.add(indexRequest);
    }
    // 3.发起bulk请求
    client.bulk(request,RequestOptions.DEFAULT);
}

es服务端查看:

5.6 自动补全查询的 JavaAPI

案例:
在这里插入图片描述
而自动补全的结果也比较特殊,解析的代码如下:

5.7 小结

文档操作的基本步骤:

  • 初始化 RestHighLevelClient
  • 创建 XxxRequest。XXX是Index、Get、Update、Delete、Bulk
  • 准备参数(Index、Update、Bulk时需要)
  • 发送请求。调用 RestHighLevelClient.xxx()方法,xxx是index、get、update、delete、bulk
  • 解析结果(Get时需要)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值