Outpainting & Inpainting

what is Inpainting(补画)?

  称为图像修复或图像填充,是一种技术,它用于修复或恢复图像中的损坏或缺失部分。通过分析图像中的周围区域,inpainting算法可以推断出缺失部分的内容,并填充相应的像素,使得图像看起来完整。这种技术在修复旧照片、去除图像中的不需要的对象或修复受损的艺术品时非常有用。

what is Outpainting(扩画)?

  称为图像扩展或图像填充,是一种技术,它通过智能地在图像的边缘添加新的像素来扩展图像的边界。这种技术通常用于创建无缝的背景或在图像的边缘添加内容,以适应特定的视觉需求。例如,如果你有一个图像,并且想要扩展它以填充更大的画布,outpainting 可以帮助自动生成图像的额外部分,使得整体看起来协调一致。

The way to realize Outpainting

  Outpainting和 Inpainting 之间存在着相同点和异同点。在实现的时候,可以借助 Inpainting 技术来实现 Outpainting 的目的。其中有一个做法就是:将四周用mask填充,然后用Inpainting技术进行修复。

summary

  两者的主要区别在于它们处理图像的方式和目的。
  Outpainting 关注于扩展图像的边界,在图像的边缘外进行绘制和生成,扩展图像的视野;而 Inpainting 则专注于修复图像内部的缺失或损坏部分,是填充图像中缺失的部分。

Others

  OpenAI推出Outpainting:基于Dall·E的任意尺寸图像扩展和同风格元素添加工具。

### 图像修复技术概述 图像修复(Inpainting)是指通过算法自动填补图像中的缺失部分或遮挡区域,使修补后的图像看起来自然且连贯。这项技术广泛应用于去除图片中的不必要对象、恢复损坏的照片以及视频编辑等领域。 #### 基于深度学习的方法 近年来,基于卷积神经网络(CNN)的模型显著提升了图像修复的效果。这些方法通常分为两类: - **全局感知修复**:利用整个输入图作为上下文来预测丢失像素的颜色值。 - **局部细节重建**:专注于受损区域周围的特征提取与重构。 其中一种先进的解决方案是LaMa Image Inpainting[^1],该方案采用OnnxRuntime框架部署GPU加速版本demo程序,在处理大规模数据集时表现出优异性能;而另一个值得注意的是RFR-Inpainting工具[^2],它实现了循环特征推理机制用于改善修复质量并减少伪影现象。 #### C# 实现案例分析 对于希望在.NET环境中集成此类功能的应用开发者而言,可以参考如下简化流程展示如何调用预训练好的LaMa模型完成基本的任务需求: ```csharp using OpenCvSharp; // 加载原始待修照片及对应的二值掩码文件 image = new Mat(image_path); int w = image.Width; int h = image.Height; image_mask = new Mat(image_path_mask); // 准备好之后就可以按照官方文档指引加载ONNX格式导出的权重参数, // 并设置必要的运行环境配置项以启动会话执行推理过程... ``` 上述代码片段展示了读取源图像及其对应掩模的基本操作步骤[^4]。实际应用中还需要进一步完善前处理逻辑(比如调整尺寸匹配),并通过适当接口传递给底层计算引擎进行高效运算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值