矩和质心之积分的应用

目录

【矩和质心简介】

【沿直线的质量】        

【一维示例:金属丝和细杄】       

【小总结1----公式】

【思考一下1】

【二维示例:薄板】

【小总结2----公式】

【思考一下2】


【矩和质心简介】

        许多结构和力学系统的行为跟它的质量集中在单独的一个点那样,该点称为质心。(图 1)。知道如何求这个点的位置是重要的并且做这件事基本上是数学工作。我们暂时只处理维和二维物体。三维物体利用重积分处理。
 

【沿直线的质量】
        

        我们分阶段发展数学建模。 第一阶段是设想在刚性 x 轴上的质量 m1,m2 和 mg 被支撑在位于原点的支点上

                                 (图1)

                         ​​​​​​​        ​​​​​​​                (图2)

                            我们太阳系的行星、小行星和彗星绕着它们的集体质心(位于太阳系内部)旋转。

        这样生成的系统可能平衡,也可能不平衡,这取决于质量多大以及如何安置它们。
        每个质量 m_{k} 生成一个向下的力m_{k}g,它等于质量大小乘以重力加速度。 这些力的每一个都有一个绕原点使轴转动的倾向,跟你转动一个跷跷板一样。这个称为转矩的效果由力m_{k}g  和从作用点到原点的有号距离的乘积来测量 。在原点左边的质量施加一个负的(反时针)转矩。原点右边的质量施加一个正的(顺时针)转矩。

        转矩的和测最一个系统绕原点转动的倾向,这个和称为系统转矩 


                                                系统转矩 = m_{1}gx_{1} + m_{2}gx_{2} + m_{3}gx_{3}      (等式1)


        当且仅当系统的转矩是零,它将平衡。
        如果在等式(1)中提出公因子g。我们看到系统转矩是:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        

于是,转矩是重力加速度g。和数 m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3} 的乘积。这里 g 是环境的特征,系统偶
然处于其中,而数 m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3} 是系统本身的特征,这足一个常数,不论系统位于哪里,它都保持同一值。
        数 m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3} 称为系统关于原点的矩。它是个别质量的矩m_{1}x_{1},m_{2}x_{2},m_{3}x_{3}之和。
        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​M_{0} = 系统关于原点的矩 = \sum m_{k}x_{k}
                                                (这生我们转换成 \sum 记号,以便能含有更多的项。)
        我们通常想知道把支点放在哪里可使系统平衡,即把支点放在什么点:可使转矩之和为零。

        ​​​​​​​              (图3)

 【注:比较质量和重量】

        重量是地心引力拉一个质量的结果 。如果一个质量为 m 的物体放在重力加速度为 g 的位置,物体在那里的重量(按照牛顿第二定律)是 F = mg。

        每个质量关于在这个特殊位置的支点的转矩是:
        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        m_{k} 关于 \bar{x} 的转矩 = (m_{k} 离开 \bar{x} 的有号距离)(向下的力)

                                                                      = (x_{k} - \bar{x})m_{k}g
        写出说明这此转矩的和是零的等式,我们就得到能够解出了的方程:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        

         这最后的等式告诉我们为求 x ,需用系统的总质量除系统的矩:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​

        点 x,称为系统的质心

【一维示例:金属丝和细杄】
       

         在许多应用中,我们需要知道杆或细丝的质心。 在这类情况下,我们可以用一个连续两数
为质量分布建模,我们公式中的求和符号就以我们就要叙述的方式变为积分。
        设想一段沿 x 轴从 x = a 到 x = b 放置的细长条并且通过区间 [a, b] 的一个划分,把它切成质量为 Δm_{k} 的小段。

        ​​​​​​​        ​​​​​​​        ​​​​​​​            (图4)

         第 k 段长 Δ x_{k} 单位,并且距离原点近似为 x_{k} 。现在注意三件事情。
首先,细长条的质心 \bar{x} 近似地和质点系统的质心一样,把每一质量 Δm_{k} 放在点 x_{k} 就得到这
个质点系统:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​

        其次,细长条的每一段关于原点的短近似地是x_{k}\Delta m_{k},于是,系统矩近似地是x_{k}\Delta m_{k}之和:
                                                                        系统矩 ≈ \sum x_{k}\Delta m_{k}
        最后,如果细长条在 x_{k} 的密度是 \delta (x_{k}),用每单位长度的质量表示,如果,是 \delta 连续的,则
\Delta m_{k} 近似地是  \delta (x_{k})\Delta x_{k}(每单位长的质量乘长度):

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        
 
组合这三个考察,即得

 ​​​​​​​          (近似式2)

         近似式(2)中的分子是连续函数  x\delta (x) 在闭区间[a.b]上的黎曼和,而分母则是函数 \delta (x) 在这个区间上的黎曼和。我们期望近似式(2)中的逼近随着分割愈来愈细而改进,这就导致等式

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​                (公式1)

【注:密度】
        一 种物质的密度是每单位体积的质量。但在实践中,我们往往使用测量方便的单位。对于金属丝,杆和窄条,我们使用单位长度的质量。对于平的薄片和平板,我们使用每单位面积的质量。

【小总结1----公式】

        这就是我们用以求 \bar{x} 的公式:


【思考一下1】

Q1: 系统转矩是什么?它由什么决定?     

        A1:系统转矩也称转矩的和,它测量的是一个系统绕原点转动的倾向。它由质量、引力和距离决定。

Q2 : 若想让系统达到平衡,系统转矩需要达到什么条件?

        A2 :系统转矩 = 0。

Q3: “ 系统关于原点的矩 ” 与什么有关?

        A3: 质量和距离。

Q4 :” 个别质量的矩 “ ,和 ” 系统关于原点的矩 “ 有什么关系?

        A4 :个别质量的矩针对系统中的某一个物体,关于原点的矩针对系统整体。

Q5: 我们为什么要引入" 矩 ” 这个概念?

        A5:给计算质心做铺垫。


【思考一下】

        如何求分布在平面区域上的质量

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        (图5)

        假定我们有分布在平面上的质量的有限集,在点 (x_{k} , y_{k}) 的质量为 m_{k}  见(图5). 系统的的质量是:

                                                                                系统质量 :M = \sum m_{k}

        每一个质量有关于每个轴的矩。它关于x轴的矩是  m_{k}y_{y},而它关于y轴的矩是 m_{k}x_{k}。整个系统
关于两个轴的矩是:

                                                                                关于 x 轴的矩 :M_{x} = \sum m_{k}y_{k}

                                                                                关于 y 轴的矩:M_{y} = \sum m_{k}x_{k}

        系统质心的x 坐标定义为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \bar x = \frac{M_{y}}{M} = \frac{\sum m_{k}x_{k}}{\sum m_{k}}        (等式2)

        对于这样选择的 \bar x,跟一维情形一样,系统关于直线 x = \bar x 平衡(图6)。

        系统质心的 y 坐标定义为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \bar y = \frac{M_{x}}{M} = \frac{\sum m_{k}y_{k}}{\sum m_{k}}        (等式3)

        对于这样选择的 \bar y ,系统关于直线 y = \bar y 了也平衡。质量关于直线  y = \bar y  的转矩相互抵消。这样只要涉及到平衡问题,整个系统的行为就跟它的质量在单独一点 (\bar x , \bar y ) 一样。 我们称这个点为系统的质心

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​              (图6)

【二维示例:薄板】

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​         (图7)

        一个平板被切成平行于 y 轴的窄条。一个典型条形关于每个轴作用的矩是它的质量 Δm 集中在条形的质心 (\bar x , \bar y ) 作用的矩。

        设想平板占据 x,y平面的一个区域,把它切割成平行于一个坐标轴(在图7中,是y轴)的窄条。一个典型窄条的质心是 (\bar x , \bar y ) 。我们把窄条的质量 Δm 当作集中在 (\bar x , \bar y ) 来处理。窄条关于 y 轴的矩就是\bar x \Delta m  ;窄条关于x 轴的矩是 \bar y\Delta m。等式(2)和(3)就成为 

        跟一维情形一样,和是积分的黎曼和,并且由乎板切成的窄条愈来愈窄时趋向这些积分 。 我们把这些积分符号化地写成如下公式。

【小总结2----公式】



        例3(常密度板)图8 所示的三角形平板有常密度。=3克/ 厘米?

        求:
                (a)平板关于y轴的短M,
                (h)平板的质量M.
                (c)平板质心的x坐标.

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​       ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​        (图8)【思考一下】

        Q :有几种方法来计算?

        A :从不同方向思考

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        (图9)

解:

方法1 :竖直窄条(图9)

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        (图10)方法2:水平窄条

        矩 M_{x} : 典型水平窄条质心的  y 坐标是 y,(见图10),于是 \bar y = y 质心的,坐标是三角形的横截线的中点的 x 坐标。这使它是 y/2 (窄条左端的 x 值)和1(窄条右端的 x 值)的亚均值

【思考一下2】

质心是什么?

        当密度两数是常数时,它就从 \bar x 和 \bar y 的公式中被消去 。这时涉及到 x 和 \bar y 时,\delta都可当作是1。

        这样,当密度是常数时,质心是物体的几何特征,而非构成它的物质的特征。

        在这种情形,工程师可以称质心为形状的质心,比如在“求三角形或锥体的质心〞。为求形状的质心,只须令 \delta 等于1,像前而那样求 \bar x 和 \bar y ,即用质量除矩。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值