小字原文 ----- 粗体字自己的理解
Topological sound
we discuss how spin and valley degrees of freedom appear as highly novel ingredients to tailor the flow of sound in the form of one-way edge modes and defect-immune protected acoustic waves.
讨论了自旋和谷自由度如何作为高度新颖的成分出现,以单向边缘模式和缺陷免疫保护声波的形式调整声音的流动。
首先说一下,什么是时间反演对称性:
再说一下,什么是霍尔效应,什么是量子霍尔效应:
量子霍尔效应(quantum Hall effect)是量子力学版本的霍尔效应,需要在低温强磁场的极端条件下才可以被观察到,此时霍尔电阻与磁场不再呈现线性关系,而出现量子化平台。霍尔效应在1879年被E.H.霍尔发现,它定义了磁场和感应电压之间的关系。当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个横向的作用力,从而在导体的两端产生电压差。
In condensed-matter physics, the distinctive phases of matter are characterized by their underlying symmetries that are spontaneously broken.
在凝聚态物理学中,物质的不同相的特征在于其潜在的对称性被自发打破。
In 1980, Von Klitzing found that a two-dimensional (2D) electron gas sample, subjected to low temperature and strong magnetic field, has a quantized Hall conductance, which is independent of sample size and immune to impurities.
1980年,Von Klitzing发现在低温强磁场作用下的二维(2D)电子气样具有量子化霍尔电导,该电导与样品大小无关,不受杂质影响。
It was later demonstrated that the state responsible for such phenomena is characterized by a completely different classification paradigm based on the notion of topological order3,4, which describes phases of matter beyond the symmetry breaking (that means two different phases can have the same symmetry), therefore opening a new research branch.
后来证明,导致这种现象的状态是由一种完全不同的分类范式所表征的,这种分类范式基于拓扑顺序3,4的概念,它描述了超越对称性破缺的物质相(这意味着两个不同的相可以具有相同的对称性),因此开辟了一个新的研究分支。
就是量子霍尔效应(条件:低温强磁场)出来以后分类可以有不同了,两个不同的相可以有同种对称性
对于霍尔效应来说,霍尔电导是一个基本性质。霍尔电导的量子化来源于能带的非平凡拓扑性,即能带具有一个非零拓扑不变量----陈数(和能带相关)。
The Chern number characterizes the geometric phase (commonly known as the Berry phase) accumulation over the Brillouin zone, and thus is closely related with the behaviors of the energy bands in the momentum space.
Chern数表征了几何相位(通常称为Berry相位)在布里渊区上的积累,因此与动量空间中能量带的行为密切相关。
It has been shown that a periodic magnetic flux, which breaks the time-reversal symmetry (unlike the traditional definition of the phases of matter, this symmetry breaking itself does not define the topological order), is able to produce non-zero Chern number
已经证明,周期性磁通量打破了时间反转对称(与物质相的传统定义不同,这种对称打破本身并不定义拓扑顺序),能够产生非零的陈数
The resulting topologically non-trivial system supports a gapless edge state in the bulk energy gap, exhibiting an interesting electronic property that is insulating in the bulk but conducting on the edge. This is essentially different from a normal insulator, where the Chern number is zero
由此产生的拓扑非平凡系统在体能隙中支持无间隙边缘状态,表现出一种有趣的电子特性,即在体中绝缘,但在边缘上导电。这与普通绝缘体本质上不同,普通绝缘体的Chern数为零。
1:普通绝缘体---chern数为0 时间反转完整
黄色gapped--有间隙的 蓝色gapless---无间隙的
2:时间反转损坏QH(量子霍尔)绝缘子---chern数不为0 时间反转不完整
除了施加磁场之外,材料固有的自旋-轨道耦合也能产生非平凡的拓扑相。
in systems with spin-orbital coupling, a pair of gapless edge states emerges in the insulating band gap.
在具有自旋-轨道耦合的系统中,在绝缘带隙中出现一对无隙边缘态。
The edge states carry conjugate electronic spins and exhibit spin-dependent propagation behaviors, as sketched in Box 1. This is the so-called quantum spin Hall effect (QSHE).
边缘态携带共轭电子自旋,并表现自旋相关的传播行为,如框1所示。这就是所谓的量子自旋霍尔效应(QSHE)。
3:时反不变(量子自旋霍尔)QSH绝缘子----整体chern数为0单个不为0 时间反转完整
谷电子霍尔效应
Valley refers to the two energy extrema of the band structure in momentum space, at which the Berry curvature exhibits opposite signs and therefore its integral over the full Brillouin zone is zero, while the integral within each valley is nonzero.As a result, the system shows a valley-selective topologically non-trival property.
谷是指动量空间中带结构的两个能量极值,在这两个极值处,贝里曲率呈现相反的符号,因此它在全布里渊区的积分为零,而每个谷内的积分为非零。结果表明,该系统在拓扑上具有谷选择性的非平凡性
贝利曲率可以看成是参数空间中的“磁场强度”,贝利联络可以看成是“磁矢势”,而贝利相位则可以看成是“磁通量”。
4:时反不变(量子谷霍尔)QVH绝缘子 总chern数为0 事件反转对称完整
Regardless of the nature of abovementioned topological phases, they share the same property that the edge states span the bulk band gap and separate domains with different Chern numbers.
无论上述拓扑相的性质如何,它们都有一个共同的特性,即边缘状态跨越体带隙并用不同Chern数来分开区域。
拓扑半金属:
In parallel with these gapped topological phases, topological semimetals, which are featured with topologically protected gapless band structures and accompanied by gapless surface states, have recently emerged as a new frontier
与这些拓扑相平行,具有拓扑保护的无隙能带结构和伴随无隙表面态的拓扑半金属是近年来兴起的一个新前沿
Among them, Weyl semimetals have received particular attention, as their quasiparticle excitation is the Weyl fermion, which has not yet been observed as a fundamental particle in vacuum. In a Weyl semimetal, the Weyl points separated in momentum space carry opposite chiral charges and are connected across the domain boundaries by a surface state, i.e., the Fermi arc, upon which the Weyl fermions are robust while carrying currents.
其中,外尔半金属受到了特别的关注,因为它们的准粒子激发是外尔费米子,而外尔费米子在真空中还没有被观察到作为基本粒子。在一个外尔半金属中,在动量空间中分离的外尔点携带相反的手性电荷,并通过一个表面状态连接跨域边界,即费米弧,在其上外尔费米子携带电流时是鲁棒的。
5:费米半金属
the photonic/phononic systems are not restricted by the Fermi levels, and therefore any appropriate regions of the spectrum can be of interest.
光子/声子系统不受费米能级的限制,因此可以对光谱的任何适当区域感兴趣。
什么是费米面?什么是费米能级?
费米面的定义是说没有被电子完全占据的能带中占有电子和不占有电子的分界面的集合,费米面具有的能级定义为费米能级。
Compared to photonic systems, acoustics differ substantially since longitudinal sound waves lack a transverse polarization degree of freedom that can be used to construct pseudo spins to mimic the spin up and down in electronic systems and breaking the time-reversal symmetry requires additional complexities, both of which are essential in realizing the quantum effects leading to topologically robust sound propagation
与光子系统相比,声学有很大的不同,因为纵向声波缺乏横向极化自由度,可以用来构建伪自旋来模拟电子系统中的上下自旋,同时打破时间反转对称需要额外的复杂性,这两者在实现导致拓扑鲁棒声传播的量子效应中都是必不可少的
分界线-------------------------------------------------------------------------------------
Analogue quantum Hall effect and quantum spin Hall effect
模拟量子霍尔效应和量子自旋霍尔效应
量子霍尔效应模拟条件:低温、强磁场
The associated Hall conductance takes the quantized values of σxy = Ce2/h, which are unaffected by impurities. Here, h represents the Plank constant, e is the charge of an electron and C is the Chern number. As mentioned above, it characterizes the topology of the electronic wave functions in the momentum space and is independent on the material properties.This is essentially the reason why the QHE is topologically robust against impurutues.
相关霍尔电导的量子化值为
不受杂质影响。这里,h代表普朗克常数,e是电子的电荷,C是chern数。如上所述,它表征了动量空间中电子波函数的拓扑结构,与材料性质无关.这基本上就是为什么QHE在拓扑上对杂质具有鲁棒性的原因。
二维条件下陈数的计算公式:
备注:其中F(k) =∇k × A(k) i定义为Berry曲率,A(k) = < un(k)|i∇k|un(k) >为Berry连接。un(k)表示动量为k的第n个能量带上的Bloch态的周期部分。在对称运算下,Berry曲率服从PF(k) = F(−k)和TF(k) =−F(−k)的规则,其中P和T分别表示奇偶算子和时间反转算子。
Note that when the system breaks T symmetry but preserving the P symmetry, the integral in Eq. (1) (which runs over the entire Brillouin zone) acquires a non-zero value, so does the Chern number.
注意,当系统破坏T对称但保持P对称时,Eq.(1)中的积分(它贯穿整个布里渊区)获得一个非零值,Chern数也是如此。
Non-zero Chern number corresponds to a topological non-trivial phase while zero Chern number corresponds to a topological trivial phase. The topological phases with non-zero Chern number offer intriguing wave transport properties like one-way edge propagation and robustness against impurities.
非零Chern数对应拓扑非平凡相,零Chern数对应拓扑平凡相。具有非零Chern数的拓扑相提供了有趣的波传输特性,如单向边缘传播和抗杂质的鲁棒性。
声学中的霍尔效应
C/P/T对称性:
Fleury et al proposed a feasible method to break the T symmetry in acoustics, relying on moving airflow in ring cavities
Fleury等人提出了一种打破声学中T对称的可行方法,依靠环形腔内流动的气流。
The imparted airflow, taking the role of magnetic bias, splits the degeneracy of the two counter-propagating azimuthal resonant modes in the ring cavities, as shown in Fig. 1a, therefore inducing acoustic nonreciprocity.
引入的气流,起着偏磁的作用,将环形腔内两个反向传播的方位角共振模的简并度劈开,如图1a所示,从而产生声学非互易性。
声音的互易性:
基于这一原理,已经报道了几种声学晶体中模拟QHE的设计22 - 26。图1b、c分别以六边形晶格和蜂窝状晶格为例。图1c中的插图说明了如何产生有效磁场来打破T对称。由于晶格内部的对称性,对于V = 0,在布里渊区边界上确定性地出现一对类狄拉克点;
狄拉克点:在石墨烯的能带结构中,其布里渊区边界的高对称点上存在具有线性色散关系的上下锥形结构,这些锥形结构的顶点被称为狄拉克点。
当气流引入时,由于T(时间)对称破坏,狄拉克样简并被提升。其特征是带隙打开,如图1d所示。在打开的缺口下方和上方的带中,评估的Chern数获得非零值(对于下带,C = 1,对于上带,C =−1),这意味着系统在拓扑上处于非平凡阶段。
According to the principle of the bulk-edge correspondence, a signature of such topologically nontrivial system is the presence of one-way edge states along its boundaries when truncated by other topologically trivial systems (i.e., C = 0). Correspondingly, acoustic wave propagation exhibits unidirectional behaviors, which are topologically protected and robust against various defects and sharp bends, as demonstrated by Fig. 1e, f.
根据体边对应原理,这种拓扑非平凡系统的一个特征是当被其他拓扑平凡系统截断(即C = 0)时,沿其边界存在单向边缘状态。相应的,声波传播表现出单向行为,在拓扑上受到保护,对各种缺陷和尖弯具有健壮性,如图1e, f所示。
Zhu et al proposed a rotating chiral structure based on ring resonators that support high-order whispering gallery modes with high Q factor. This special design allows the system to produce giant acoustic nonreciprocity at small rotation speed, and therefore a stable and uniform airflow can be generated. On the other hand, using active liquids that can flow spontaneously even without an external drive has also been explored to break the T symmetry
上述条件不好实现,所以Zhu等人提出了一种基于环谐振腔的旋转手性结构,该结构支持高Q因子的高阶低语廊模。这种特殊的设计使得系统在小转速下产生巨大的声学非互易性,从而产生稳定均匀的气流。另一方面,使用即使没有外部驱动也能自发流动的活性液体也被探索来打破T对称。
量子自旋霍尔效应(QSHE)
The QSHE can be regarded as the effect of two coupled quantum Hall states.
QSHE可以看作是两个耦合的量子霍尔态的效应。
Differently, the spin-orbit coupling plays an essential role in the QSHE where the coupling between spin and orbital angular momentum causes the moving electrons to feel a spin-dependent force, even in the absence of magnetic materials. As a result, the electrons with opposite spin angular momenta (often referred as spin up and spin down) will move in opposite directions along the edges. The topological order that characterizes this phenomenon is described by the so-called spin Chern number (or the Z2 topological invariant)
不同的是,自旋-轨道耦合在QSHE中起着至关重要的作用,自旋和轨道角动量之间的耦合使移动的电子感到自旋相关的力,即使在没有磁性材料的情况下也是如此。因此,具有相反自旋角动量的电子(通常称为自旋向上和自旋向下)将沿着边缘向相反的方向移动。描述这种现象的拓扑顺序由所谓的自旋Chern数(或Z2拓扑不变量)来描述,公式为:
where F±(k) = ∇k × 〈u±(k)|i∇k|u±(k)〉 is the Berry connection, similar as that in Eq. (1). The electron states are unambiguously decomposed into two sectors, u+(k) and u−(k), representing the spin up and down components, respectively.
其中,F±(k) =∇k × < u±(k)|i∇k|u±(k) >是Berry连接,类似于Eq.(1)。电子态被明确地分解为两个扇区,u+(k)和u−(k),分别代表自旋向上和向下分量。
The spin Chern numbers defined in Eq. (3) have been proved to be true topological invariants, which are robust against the presence of finite disorder scatterings, including spin nonconserving symmetrybreaking perturbations. In other words, any non-magnetic impurities will not eliminate the metallic edge states, as the electrons are never completely reflected when scattered, even if the impurity becomes stronger and the description with respect to well-separated scattering events is invalid.
式(3)中定义的自旋Chern数已被证明是真正的拓扑不变量,它对有限无序散射(包括自旋非守恒对称破缺摄动)的存在具有鲁棒性。换句话说,任何非磁性杂质都不会消除金属边缘态,因为电子在散射时永远不会完全反射,即使杂质变得更强,而关于良好分离散射事件的描述是无效的。
补充知识:
Kramers degeneracy(克莱默简并):
玻色子:
玻色子(英语:boson)是遵循玻色-爱因斯坦统计,自旋量子数为整数的粒子。玻色子不遵守泡利不相容原理,多个全同玻色子可以同时处于同一个量子态,在低温时可以发生玻色-爱因斯坦凝聚。和玻色子相对的是费米子,费米子遵循费米-狄拉克统计,自旋量子数为半整数(1/2,3/2,……)。物质的基本结构是费米子,而物质之间的基本相互作用却由玻色子来传递。
声学中的量子霍尔效应:
A possible solution was addressed based on using coupled resonators that support clockwise and anticlockwise resonant modes, which impart the pseudo spins.
一种可能的解决方案是基于使用支持顺时针和逆时针谐振模式的耦合谐振器,用来提供伪自旋。
Recently, another approach was proposed utilizing two degenerate Bloch modes, instead of two polarizations or two resonant modes, to create the pseudo spin states.Specifically, by expanding a primitive unit cell to a larger cell, the Dirac-like cones at the K and K′ points in the original Brillouin zone are folded at the Γ point in the new Brillouin zone, forming the doubly degenerate Dirac-like cones.
最近,有人提出了另一种方法,利用两个简并布洛赫模,而不是两个偏振或两个共振模,来产生伪自旋态。具体来说,将原单胞扩展为较大的胞,原布里渊区的K点和K’点处的类狄拉克锥在新布里渊区的Γ点处折叠,形成双简并类狄拉克锥。
By tuning the composite material or geometric parameters, a band inversion can happen near the degenerate point, associated with a topological transition (Fig. 2a).
通过调整复合材料或几何参数,可以在简并点附近发生带反转,并与拓扑跃迁相关(图2a)
an accidental degeneracy technique was also implemented to create the doubly degenerate Dirac-like cones and the pseudo spins, taking the advantage of the large index and impedance contrast of the composite materials, which is especially common in acoustics.
利用复合材料在声学中普遍存在的较大的折射率和阻抗对比,利用偶然简并技术实现了双简并的类狄拉克锥和伪自旋。
偶然简并性:
"偶然"简并一般用来指那些由不是很明显的对称性带来的简并.
展示实例:
在这里,我们详细演示了如何在空气中由钢棒组成的蜂窝晶格中基于偶然简并实现声学模拟QSHE。
By decreasing the filling ratio of the steel rods, the two pairs of dipolar and quadrupolar modes, separated by a band gap, will move in frequency and exchange their positions (the so-called band inversion). In between, there is a point where the band gap is closed and the two pairs accidentally touch together, forming the doubly degenerate Dirac-like cones (essentially different from the zone folding mechanism). This gap-opened, closed and re-opened process is sketched in Fig. 2b, which leads to a topological transition from the trivial (ordinary) state to the non-trivial (topological) state.
通过降低钢棒的填充率,被带隙隔开的两对偶极和四极模将在频率上移动并交换位置(所谓的带反转)。在这中间,有一个带隙关闭的点,两对偶对接触在一起,形成双简并dirac样锥(本质上不同于带折叠机制)。这个开隙、闭隙和再开的过程如图2b所示,它导致了从平凡(普通)状态到非平凡(拓扑)状态的拓扑过渡。
The transition point is exactly the double Dirac-like point. In the topological non-trivial state, a pair of edge states appear, carrying opposite group velocities to emulate the spin-up and down states. Correspondingly, the spin-dependent sound propagation can be expected, which is depicted in Fig. 2c. More studies in Fig. 2d reveal that the spin-locked edge state propagation is immune to various defects, including cavities, disorders, and bends, essentially different from a regular waveguide.
过渡点就是双类狄拉克点。在拓扑非平凡态中,出现一对边缘态,携带相反的群速度来模拟自旋向上和向下的状态。相应地,可以预期自旋依赖的声音传播,如图2c所示。图2d中更多的研究表明,自旋锁定边缘状态的传播不受各种缺陷的影响,包括空腔、紊乱和弯曲,这与常规波导本质上不同。
Acoustic valley-Hall and pseudo spin effect
声学谷霍尔和伪自旋效应
sonic crystals (SCs)声波晶体 布里渊区(BZ) 声学谷霍尔(AVH)
Lu et al firstly introduced the concept of valley states to SCs for acoustic waves. The hexagonal SC consists of triangular rods in a 2D waveguide, of which symmetries can be characterized by the rotation angle α (Fig. 3a). It has been pointed out that the existence of a two-fold Dirac degeneracy at the corners of the 1st Brillouin zone (BZ) for any SC with α = nπ/3 is protected by the C3v symmetry, whereas the degeneracy would be lifted for any other rod orientation breaking the mirror symmetries.
Lu等人首次将谷态概念引入到声波的SCs中。六边形SC由二维波导中的三角形杆组成,其对称性可以用旋转角α来表征(图3a)。指出对于任何α = nπ/3的SC,在第1布里渊区(BZ)角处存在双重狄拉克简并,但C3v对称保护了它的存在,而对于任何其他打破镜像对称的杆定向,狄拉克简并将被消除。
a:An acoustic valley Hall (AVH) insulator声学谷绝缘体
A s shown in Fig. 3b, the dispersion relations for the SCs with α = 0° and −10° are illustrated. The vortex revolution at each valley (i.e., clockwise and anticlockwise) plays the role of the valley degree of freedom in a 2D acoustic system, as shown in insets of Fig. 3c.
Figure 3c shows the tuning of the acoustic valley-Hall (AVH) phase transition in a SC by variation of the rotating angle α. When α < 0°, the vortex chirality of the lower (upper) state is clockwise (anticlockwise), which appears exactly inverted when α > 0°.
如图3b所示,说明了α = 0°和−10°时sc的色散关系。在二维声学系统中,每个谷(即顺时针和逆时针)处的涡旋旋转起着谷自由度的作用,如图3c的插图所示。
色散关系:
色散关系(dispersion relation)是指物理学中从因果律出发(与其他 原理相结合)得出的积分关系式的统称。色散关系作为因果律的推论,主要思想可概括为:设外界对某一物理系统输入信号(或施加作用),作为反应系统产生输出信号(或次级作用)。只要此系统具有下述性质:①内部运动规律不随时间改变;②输入和输出按因果方式联系;③输出是输入的线性泛函,则可求出此线性泛函的傅里叶变换的解析性质,进而得到可测量间的积分关系式——色散关系。
图3c显示了旋转角α对SC中声谷-霍尔(AVH)相变的调节。当α < 0°时,下(上)态的旋涡手性为顺时针(逆时针),当α >0°时,旋涡手性正好相反。
b:α = 0°无隙情况(黑线)和−10°有隙情况(彩色线)的色散关系
c:拓扑相位依赖于α,其中嵌入显示了涡旋特征
The time-reversal symmetry leads to the Chern number C = 0, which is the integral of Berry curvature over the full BZ. On the contrary, the Berry curvature exhibits strong peaks at the gap minima near K and K′ points of the BZ for small perturbation m.
时间反转对称导致切恩数C = 0,这是贝里曲率对整个BZ的积分。相反,对于小扰动m, Berry曲率在BZ的K和K′点附近的隙最小值处出现了很强的峰值。
The integral of the Berry curvature over an individual valley (one half of the BZ) is accurately defined and the non-vanishing valley-Chern indices can be determined by As a result, the difference in the topological charge across the interface is quantized, which maintains a chiral edge mode according to the bulkboundary correspondence
Berry曲率在单个山谷(BZ的一半)上的积分是精确定义的,不消失的山谷- chern指数可以由上式确定。其结果是,通过界面的拓扑电荷的差异被量化,根据体边界对应保持手性边缘模式。
To verify this, two distinct SC interfaces are studied: one is constructed out of SCs with α = 10° and 50°, of which the dispersion relation is illustrated in the top panel of Fig. 3d, and the other is constructed out of SCs with α = −10° and 10°, of which the dispersion relation is shown in the bottom panel.
为了验证这一点,我们研究了两个不同的声子晶体界面:一个是α = 10°和50°声子晶体界面,其色散关系如图3d顶部面板所示;另一个是α =−10°和10°SC界面,其色散关系如图3d底部面板所示。
d:分离两个拓扑相同(上面板)和不同(下面板)声学谷霍尔绝缘相的接口色散。
In the former case, the spectrum of relevance is completely gapped due to the presence of identical valley-Hall phases within the facing SC. However, in the latter case, topological edge states fall within the bulk band gap as indicated by the green lines, which originate from AVH phase-inversion across the interface. Similar to the QSHE, edge states associated to the AVH effect appear robust against bends and crystal defects.
在前一种情况下,由于面对SC内存在相同的谷-霍尔相位,相关频谱完全被间隙。然而,在后一种情况下,拓扑边缘状态落在体带隙内,如绿线所示,这是由跨界面的AVH相位反转产生的。与QSHE相似,与AVH效应相关的边缘状态对弯曲和晶体缺陷表现出鲁棒性。
e:功率传输(黑线)和反射(红线)光谱为之字形路径,其中插入显示场分布。
f:为之字形路径(红圈)和直线通道(黑圈)测量的传输压力
图3e显示了拓扑谷投影边缘模式沿包含两个急弯的界面传播时的一个可忽略的弱后向散射。实验测量的带有和不带有急弯的界面输出通道的压力振幅如图3f所示,表明带有急弯的边缘状态的传输压力与拓扑带隙内直线路径的传输压力几乎完全重合。因此,尽管晶格尺度的缺陷和障碍可能在抑制传输的情况下诱发谷间散射,但如图3e所示的急剧弯曲表明,谷-霍尔绝缘体中很容易实现后向散射免疫声导。
Zhang et al experimentally realized topologically protected broadband delay lines based on engineered phase delay defects (PDDs) that constitute a new platform for acoustic devices. The structure consists of three-legged rods (TLRs) arranged into a triangular lattice providing an enlarged topological band gap through an optimized shape of these rods. The tunability of the unit cell is obtained through computer-controlled motors, which can configure the topologically protected pathway consequently. Sound waves transmit either through Port 1 or Port 2 (see Fig. 4b), depending on the rotation angle selected to be −30° or 30°, respectively. This configurability of the TLRs to any desired angle further promise vast possibilities of functional devices. Short pulses can transmit through them due to the broadband response character, and their dynamic response can be engineered at will.
Zhang等人通过实验实现了基于工程相位延迟缺陷(pdd)的拓扑保护宽带延迟线,构成了声学器件的新平台。该结构由排列成三角形晶格的三腿杆(TLRs)组成,通过这些杆的优化形状提供了扩大的拓扑带隙。通过计算机控制电机获得单元单元的可调性,从而对拓扑保护路径进行配置。声波通过端口1或端口2传输(见图4b),取决于旋转角度分别选择为−30°或30°。这种可配置的三角杆到任何所需的角度进一步承诺了功能设备的巨大可能性。由于它们的宽带响应特性,短脉冲可以通过它们传输,并且可以随意设计它们的动态响应。
可重构拓扑开关和宽带拓扑声延迟线
a, b显示可重构拓扑开关的设置和压力场分布。
c:拓扑时延时间示意图
e,d:通过一个和两个弯道显示时间延迟和测量信号
The tremendous advantage of signal transmission without any reflection even in the pathway with sharp bends enables the acoustic delay lines by means of topologically protected transient edge states. The PDDs in the form of square-shaped detours with four sharp bends along the interface can generate a time delay (see Fig. 4).
利用拓扑保护的瞬态边缘状态,可以实现声延迟线,即使在有急转弯的通道中,信号传输也没有任何反射,这是一种巨大的优势。沿界面有四个急弯的方形弯道形式的pdd(相位延迟缺陷)可以产生时间延迟(见图4)。
延时公式
∂φi是声波的相位,I是绕道的次数,∂φ0是通过直线路径的相位。通过连续叠加多条弯道,可以非常灵活地增加时延。
时延等于---
其中sj为传输线的长度,cj = 2π (df/dk)j为声速,j = 1,2表示不同类型的接口。图4d显示了单PDD和双PDD的时延,图4e中的实测信号证实了这一点。该设计为建立能够缓冲多声脉冲的多级宽带拓扑保护延迟线铺平了道路。
(Valley topological phase in a bilayer sonic crystal (BSC))双层声波晶体(BSC)中的谷拓扑相
a:单元格的示意图,其中显示侧视图和俯视图。
除了单个SC中的valley-Hall相之外,Lu等人最近使用一种独特的双层声学晶体(BSCs)设计提出了层混合和层极化的拓扑valley-Hall相。图5a展示了双层声学晶体BSC的单位细胞示意图,它由两层有限的声学晶体组成,夹在一对刚性板之间,由一个用蜂窝状圆形孔阵列穿孔的板隔开。每一层都由规则的三角形杆组成的六角形阵列。因此,相对于相对角α和公角β,方向的自由度是广泛的。
Figure 5b depicts a phase diagram in the entire angular domain, illustrating straight and curved lines, which are associated with ring and point degeneracies, respectively.
图5b描述了整个角域的相位图,分别与环简并和点简并相关联的直线和曲线。
b:简化相图依赖于角度(α, β)。数值相位边界(实线)证实了模型预测(点),显示了全向带隙的闭合。
阴影区域(有斜杠)表示非平凡AVH相位,其特征是与单层系统相关的量化拓扑不变,而相位图的其余区域表示非平凡声学层-谷霍尔(ALH)相位,其特征是。
c,d:显示沿两个拓扑上不同的声学谷霍尔(AVH) BSCs和声学层-谷霍尔(ALH) BSCs之间的界面的投影色散关系。
如图5c所示,在K谷(红色曲线)处出现了两个群速度为正的边缘模态,在K′谷处由于时间反转对称,出现了另外两个群速度相反的边缘模态(蓝色曲线)。特征场两层都有(见插图)。
与AVH情形相比,两种边缘模态在K谷处的群速度相反。特征场主要集中在上层或下层(图5d)。
That is to say, for the edge state projected by the same valley, sound waves propagate towards one side in the upper layer and towards another side in the lower layer without any interference with each other, which is equivalent to spin-orbital couplings in electronic systems. As shown in Fig. 5e, an efficient inter-layer converter can be constructed by four distinct BSC phases that support ALH (bilateral) and AVH (middle) edge modes along the interfaces in the x-direction. Most of the sound energy radiated from a point source located at the left side of the upper layers can be transferred to the lower layer as the wave reaches another ALH interface.
也就是说,对于同一山谷投射的边缘状态,声波在上层向一侧传播,在下层向另一侧传播,彼此之间互不干涉,相当于电子系统中的自旋轨道耦合。如图5e所示,一个有效的层间转换器可以由四种不同的BSC相构成,它们在x方向上沿界面支持ALH(双边)和AVH(中间)边缘模式。当声波到达另一个ALH界面时,从位于上层左侧的点源辐射出的大部分声能可以转移到下层。
e:模拟了声浓度从上层到下层变化的场型
三维拓扑声学
Three dimensional topological acoustics
Weyl semimetals are periodic systems that possess Weyl points, which are topological robust band degeneracy points.
外尔半金属是具有外尔点的周期体系,外尔点是拓扑鲁棒能带简并点。
The Hamiltonian which describes a Weyl point with a topological charge of +1 or −1 is given by
描述拓扑电荷为+1或- 1的Weyl点的哈密顿量由公式给出
其中q = (qx, qy, qz), qi是起源于Weyl点的波矢量,f(q)是q的任意实函数,v是3 × 3常数矩阵,σ0是2 × 2单位矩阵,σx, σy, σz是泡利矩阵。
泡利矩阵:在数学和数学物理中,泡利矩阵是一组三个2×2的幺正厄米复矩阵,以物理学家沃尔夫冈·泡利命名的。在量子力学中,它们出现在泡利方程中描述磁场和自旋之间相互作用的一项。所有的泡利矩阵都是厄米矩阵,它们和单位矩阵I(有时候又被称为为第零号泡利矩阵σ0),的线性张成为2×2厄米矩阵的向量空间。
幺正矩阵:幺正矩阵表示的就是厄米共轭矩阵等于逆矩阵。对于实矩阵,厄米共轭就是转置,所以实正交表示就是转置矩阵等于逆矩阵。实正交表示是幺正表示的特例。
Weyl points are robust against any perturbations which keep the wave vectors as good quantum numbers. This can also been seen from the fact that the Weyl Hamiltonian contains all the Pauli matrices and hence local perturbation can only serve to shift the Weyl point in momentum space but cannot open a band gap. A Weyl point can only be “annihilated” by another Weyl point which carries the opposite topological charge and a band gap can be opened if Weyl points carrying opposite charges collide in momentum space.
外尔点使波向量保持为良好的量子数,对任何扰动都具有鲁棒性。这也可以从Weyl Hamiltonian包含所有泡利矩阵这一事实中看出,因此局部摄动只能在动量空间中移动外尔点,而不能打开带隙。一个外尔点只能被另一个带相反拓扑电荷的外尔点“湮灭”,如果带相反电荷的外尔点在动量空间中碰撞,则会打开带隙。
图注释:welyl半金属和拓扑带电节点表面半金属。a, e给出了分别具有Weyl点和带电节点表面的系统的紧束缚模型。b, f分别表示a, e中紧结合模型的倒数空间中的拓扑电荷分布,其中红色和蓝色球体分别表示电荷+1和- 1的Weyl点,红色表面表示拓扑电荷+2的节点面。在第一布里渊区的一些高对称性点也被标记出来。C为带结构,其中t0 = 1, tc = 0.2。这里红色和蓝色分别对应a、e中的紧绑定模型。d表示chern数作为kz的函数,它在 kz = 0 和 kz = π 时发生变化。
Fig. 6a shows the schematic picture of a tight-binding model that explains the formation Weyl points in the reciprocal space for that particular system. This tight-binding model can be regarded as an AA stacking of graphene lattice along the z-direction, where the red and blue spheres represent different sublattices and the black bonds represent intralayer hopping with hopping strength t0. Interlayer hopping is represented by the cyan bonds and with hopping strength tc.In this tight-binding model, time-reversal symmetry is preserved and hence both t0 and tc are real constants.
图6a显示了一个紧密绑定模型的示意图,该模型解释了该特定系统的互易空间中的形成Weyl点。这种紧密结合模型可以看作是石墨烯晶格沿z方向的AA叠加,其中红色和蓝色球体代表不同的子晶格,黑色棍子代表层内跳跃,跳跃强度为t0。层间跳变用蓝色棍子表示,跳变强度为tc。在这个紧密结合的模型中,时间反转对称性被保留了下来,因此t0和tc都是实常数。
The first Brillouin zone of this tight-binding model is shown in Fig. 6b with some high symmetry points also being labeled. The band structures along some high symmetric directions are shown in Fig. 6c with the red curve, where the hopping parameters are taken to be t0 = 1 and tc = 0.2. The band dispersions are linear near the points K and H along all the high symmetric directions, which indicates that this tight-binding model possesses Weyl points at K and H as well as K′ and H′.
这个紧密结合模型的第一个布里渊区如图6b所示,一些高度对称的点也被标记出来。一些高对称方向的能带结构如图6c所示,红色曲线,其中跳变参数取t0 = 1, tc = 0.2。带色散沿所有高对称方向在K和H点附近呈线性,这表明该紧束缚模型在K和H点以及K '和H '处都有Weyl点。
This fact also illustrates an important property of Weyl crystals: the total charge inside the first Brillouin zone of a periodic system should vanish. This distribution of the Weyl points and their associated topological charges are shown in Fig. 6b.
这一事实也说明了外尔晶体的一个重要性质:周期系统的第一布里渊区内的总电荷应该消失。图6b显示了韦尔点及其相关拓扑电荷的分布。
In this system, kz is a good quantum number, and hence one can define the Chern number of any two-dimensional subsystems with a fixed kz. In Fig. 6d, we show the Chern number as a function of kz with the red curve. The Chern number only changes when it comes across a kz plane with nonzero topological charge. In this system, the Chern number is +1 for kz > 0 and −1 for kz < 0. According to the bulk-edge correspondence, there should be one-way edge states provided that kz is preserved. Such one-way edge states should be present for any kz ≠ 0 o r π which then forms a Riemann surface like structure and the iso-energy contour of it is known as the Fermi arc.
在这个系统中,kz是一个很好的量子数,因此我们可以定义任何二维子系统的Chern数,其kz是固定的。在图6d中,我们用红色曲线显示了Chern数作为kz的函数。chern数只有在遇到具有非零拓扑电荷的kz平面时才会改变。在这个系统中,当C(kz) >为0时,Chern数为+1,当C(kz) < 0时,Chern数为−1。根据体边对应关系,在保留kz的情况下,应该存在单向边态。对于任何kz≠0或π都应该存在这样的单向边态,从而形成黎曼曲面状结构,其等能轮廓称为费米弧。
Weyl points are not the only object in the reciprocal space that possesses a topological charges96. A nodal surface, which is a surface degeneracy between two bands, can also possess a nonzero topological charge.The band dispersion is linear in the vicinity of the nodal surface. Note here that G2z symmetry only protects the presence of the nodal surface, whether it is topologically charged or not depends on the system parameters.A tight-binding model that exhibits this symmetry and also possesses a charged nodal surface can be obtained by simply shifting one of the sublattice in Fig. 6a along the z-direction by dh/2, and the resulting tight-binding model is shown in Fig. 6e. Here, the intralayer hopping is also slightly modified to preserve the G2zsymmetry.The band structure of this tight-binding model is shown in Fig. 6c with the blue curve. Here the intralayer hopping (denoted by the black bonds) and interlayer hopping (denoted by the cyan bonds) are set as t0 = 1 and tc = 0.2, respectively. We see that the two bands become degenerate on the kz = π plane and the dispersion is linear away from this nodal surface. The Weyl points at K and K′ still are preserved while the Weyl points at H and H′ are merged into the nodal surface and hence the nodal surface should possess topological charge +2. The charge distribution of the tight-binding model in Fig. 6e is shown in Fig. 6f, where the red plane represents the nodal surface with topological charge +2. The Chern numbers as a function of kz remain the same as that in Fig. 6d.
外尔点并不是倒数空间中唯一具有拓扑电荷的物体。节点表面是两个带之间的表面简并,也可以具有非零拓扑电荷。带色散在节点表面附近呈线性。注意,G2z对称只保护节点表面的存在,它是否在拓扑上带电取决于系统参数。只需将图6a中的一个子晶格沿z方向移动dh/2,就可以得到一个具有这种对称性并具有带电节点表面的紧密结合模型,得到的紧密结合模型如图6e所示。在这里,层内跳跃也被轻微修改,以保持g2z对称。
这个紧密结合模型的能带结构如图6c所示,带蓝色曲线。这里层内跳(用黑色键表示)和层间跳(用青色键表示)分别设为t0 = 1和tc = 0.2。我们看到两个带在kz = π平面上简并,并且色散在远离这个节点面的地方是线性的。K和K '处的Weyl点仍然保留,H和H '处的Weyl点合并为节点面,因此节点面应具有+2的拓扑电荷。图6e中紧密结合模型的电荷分布如图6f所示,其中红色平面为拓扑电荷+2的节点面。Chern数作为kz的函数与图6d相同。
In this work, the authors realized an acoustic Weyl metacrystal, measured the Fermi arc and demonstrated the robustness of the surface states. Figure 7a shows the experimental sample and the insets show the front (lower left) and back (lower right) views of the unit cell. The sample was fabricated by 3D printing technology, and the printed structure can be treated as sound hard where the sound waves cannot penetrate.In this system, the Weyl points with opposite charges are not related by any symmetry and hence their frequencies can be different. The frequencies of the Weyl points under consideration at K and H are 15 kHz and 16 kHz, respectively.
在这项工作中,作者实现了一个声学威尔元晶体,测量了费米弧,并证明了表面态的鲁棒性。图7a显示了实验样品,插图显示了单元格的前面(左下)和后面(右下)视图。该样品由3D打印技术制作,打印出的结构可以处理成声音坚硬,声波无法穿透。在这个系统中,带相反电荷的韦尔点没有任何对称性,因此它们的频率可能不同。在K和H处所考虑的外尔点的频率分别为15 kHz和16 kHz。
a:样品的一张照片,其中的插图显示了单元格的前面(左下)和后面(右下)视图。
Figure 7b shows the surface Brillouin zone on the kx−kz plane and projection of Weyl points as denoted by the green and purple spheres. The solid and dashed curves represent the “Fermi arcs” on the positive and negative x−z surfaces, respectively. The working frequency is chosen to be 15.4 kHz which is between the frequencies of these two Weyl points. At this frequency, the equi-frequency contours of the bulk bands around the Weyl points project to elliptical disks as outlined by the purple curves. The Fermi arcs connect these elliptical disks.
图7b显示了kx - kz平面上的表面布里维因带和用绿色和紫色球体表示的Weyl点的投影。实线和虚线曲线分别表示正x - z曲面和负x - z曲面上的“费米弧”。工作频率选择在这两个韦尔点的频率之间的15.4 kHz。在这个频率上,围绕Weyl点的体带的等频轮廓投射到由紫色曲线勾勒的椭圆盘上。费米弧连接着这些椭圆圆盘。
b:用表面波场的傅里叶变换测量费米弧
Experimentally, one can measure the surface wave field distributions which can be Fourier transformed to obtain the Fermi arc. The experimental results are shown as color code in Fig. 7b, where red represents maximal value and blue represents minimal value. The experimentally measured results agree quite well with the numerical simulations.As discussed before, such systems support one-way surface states against kz preserved scatterings, which are also experimentally demonstrated
在实验上,可以测量表面波场分布,通过傅里叶变换得到费米弧。实验结果如图7b所示,红色表示最大值,蓝色表示最小值。实验结果与数值模拟结果吻合较好。如前所述,这样的系统支持单向表面态对kz保持的散射,这也在实验中得到了证明。
Topological mechanical waves
拓扑机械波
对于弹性振动和机械波,等同于前面的章节,我们区分完整和破碎的时间反转对称系统,它们最终将分别以螺旋自旋极化和手性单向边缘态的形式产生界面支持模式。
陀螺晶格是能够形成禁带带隙的杰出候选者,在禁带带隙中,体振动被抑制。这种间隙的打开是通过旋转陀螺仪打破T对称引起的,允许波仅以单向和拓扑鲁棒手性边缘态的形式沿有限的样品界面维持。
为了用机械波模拟QSHE和在界面处发射螺旋边缘振动,可以恢复到无源系统,即T对称结构,不需要外部偏差来违反互易性。根据克莱默斯简并定理,为了保持T对称,两个相反的反传播自旋必须在相同的频率下共存。因此,我们在摆格中检测了螺旋边缘态,并对结构板和颗粒晶体中的兰姆波和弯曲波进行了预测。
如上所述,除了伪自旋,声波还能模拟谷度自由度。最近的文献研究表明,谷霍尔极化机械态可以引起拓扑保护振动,而不是追求类似于电子对应物的新型信息和能量载体。为了使声子晶格的狄拉克锥间隙,在单元胞内引入了质量不等的六方氮化硼类几何结构,从而打破了反演对称性。结果表明,这些弹性系统包含拓扑上非平凡的带隙,带隙包含后向散射抑制边缘状态。类似的工作也被用于观察双层、细脉连接杆晶体、薄板和双原子波导中的拓扑谷极化状态。