LSTM笔记

RNN, LSTM, GRU模型的作用, 构建, 优劣势比较,attention机:
https://blog.csdn.net/sinat_28015305/article/details/109355828?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167903492816800182195114%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167903492816800182195114&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-2-109355828-null-null.142^v74^insert_down38,201^v4^add_ask,239^v2^insert_chatgpt&utm_term=RNN%E6%A8%A1%E5%9E%8B&spm=1018.2226.3001.4187

LSTM的输出和参数:
https://blog.csdn.net/ssswill/article/details/88429794?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522167870775616800184190436%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=167870775616800184190436&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-3-88429794-null-null.142^v73^insert_down4,201^v4^add_ask,239^v2^insert_chatgpt&utm_term=LSTM%E8%BE%93%E5%87%BA%E6%98%AF%E4%BB%80%E4%B9%88&spm=1018.2226.3001.4187
# 数据集的准备
1:定义好Field
2:建立词表
3:建立迭代器

import spacy
import torch
 
from torchtext.datasets import Multi30k #pytorchtext自带的Multi30k数据集
from torchtext.data  import Field,BucketIterator

# 1:定义好Field
#创建分词器器
spacy_en=spacy.load("en_core_web_sm")#英语分词器
spacy_de=spacy.load("de_core_news_sm")#德语分词器

def en_seq(text):
    return [word.text for word in spacy_en.tokenizer(text)]
 
def de_seq(text):
    return [word.text for word in spacy_de.tokenizer(text)][::-1]#源端倒序
 
#源端的处理手段
#field函数的参数说明:https://blog.csdn.net/bqw18744018044/article/details/109150802
SRC=Field(tokenize=de_seq,#分词函数
         init_token="<sos>", #起始字符
         eos_token="<eos>", #结束字符
         lower=True) #把数据转换为小写
 
#目标端的处理手段
TRG=Field(tokenize=en_seq,
         init_token="<sos>",
         eos_token="<eos>",
          lower=True)
#定义dataset数据集,这里将其数据经过fiels处理
#splits方法可以同时读取训练集,验证集,测试集
train_data,valid_data,test_data=Multi30k.splits(exts=(".de",".en"),
                                               fields=(SRC,TRG))

 
print(f"Number of training examples: {len(train_data.examples)}")
print(f"Number of validation examples: {len(valid_data.examples)}")
print(f"Number of testing examples: {len(test_data.examples)}")

结果:

Number of training examples: 29000
Number of validation examples: 1014
Number of testing examples: 1000
#查看一下每一个样本,主要也是观察是否源端是否逆序:
vars(train_data.examples[1]) # vars() 函数返回对象object的属性和属性值的字典对象。

 

{'src': ['.',
  'antriebsradsystem',
  'ein',
  'bedienen',
  'schutzhelmen',
  'mit',
  'männer',
  'mehrere'],
 'trg': ['several',
  'men',
  'in',
  'hard',
  'hats',
  'are',
  'operating',
  'a',
  'giant',
  'pulley',
  'system',
  '.']}
# 2:建立词表

#可以发现源端已经逆序。接下来为源端和目标端分别建立词表,要求每个词最少出现2次,否则为<unk>
SRC.build_vocab(train_data,min_freq=2) #min_freq:取出词汇表中大于等于该值的数据 
##设置最小词频为2,当一个单词在数据集中出现次数小于2时会被转换为<unk>字符。

TRG.build_vocab(train_data,min_freq=2)

#建立好词表以后,我们建立迭代索引,若batch_size=1的话,文本长度不相等也是无所谓的,但是batch_size>1的时候,就有有问题,同一批样本不一样长,那么我们在训练的时候,循环时间步到底设置多少,所以一般我们都会对句子进行pad操作补齐,幸运的是torchtext迭代器自动帮助pad填充,其中BucketIterator迭代器更是选择最合适的长度作为所有句子的固定长度,低于词长度的进行pad,高于此长度则进行裁剪。(这个固定长度是依据数据集里面所有的样本长度得出最合适的)

# 3:建立迭代器
cuda = torch.cuda.is_available()#看GPU能不能用
print(cuda)

BATCH_SIZE = 128 #一批次多少个词语
#建立迭代器
train_iterator, valid_iterator, test_iterator=BucketIterator.splits(
    (train_data,valid_data,test_data),
    batch_size=BATCH_SIZE,
    device=torch.device('cuda' if cuda else 'cpu')
)

for example in train_iterator:
    break
print('1:源数据设备,目标数据设备',example.src.device,example.trg.device,len(example))
print('2:源数据shape,目标数据shape',example.src.shape,example.trg.shape)
print('3:源数据',example.src)
print('4:目标数据',example.trg)
1:源数据设备,目标数据设备 cuda:0 cuda:0 128
2:源数据shape,目标数据shape torch.Size([27, 128]) torch.Size([29, 128])
3:源数据 tensor([[   2,    2,    2,  ...,    2,    2,    2],
        [   4,    4,    4,  ...,    4,    4,    4],
        [ 445, 1054,  284,  ...,  441,   34,  996],
        ...,
        [   1,    1,    1,  ...,   16,    1,    1],
        [   1,    1,    1,  ...,    8,    1,    1],
        [   1,    1,    1,  ...,    3,    1,    1]], device='cuda:0')
4:目标数据 tensor([[  2,   2,   2,  ...,   2,   2,   2],
        [360,   7,   4,  ...,   4,   4,   4],
        [351, 399,  33,  ...,  14,   9,  14],
        ...,
        [  1,   1,   1,  ...,   3,   1,   1],
        [  1,   1,   1,  ...,   1,   1,   1],
        [  1,   1,   1,  ...,   1,   1,   1]], device='cuda:0')

我们发现输出的样本是[seq_len,batch_size],而非[batch_size,seq_len]。我的习惯是batch_size放前面,但是Pytorch机制默认的是seq_len放在前面,后面的LSTM也是一样的。针对这个问题,可以通过permute函数进行交换

example.src=example.src.permute(1,0) #将0维和1维交换位置 就变为(一轮大小,句子长度)
example.trg=example.trg.permute(1,0)
print('源数据shape,目标数据shape:',example.src.shape,example.trg.shape)

这里我们必须要知道填充的位置,即 pad 的位置,因为无论是词嵌入的Embedding中还是计算损失函数的Loss中,都是不参与计算的。因此其,查看源端与目标端 pad 的index

# 建立模型

import torch.nn as nn
class  Encoder(nn.Module):
    #src_vocab_size德语词汇表大小 有多少个词
    #emb_model词向量维度:用多少维来表示一个符号
    #hidden_size隐藏节点个数,n_layers层数
    def __init__(self,src_vocb_size,emb_model,hidden_size,n_layers,dropout):
        super(Encoder,self).__init__()
        
        self.embed=nn.Embedding(src_vocab_size,emb_model,padding_idx=1)
        self.lstm=nn.LSTM(input_size=emb_model,hidden_size=hidden_size,num_layers=n_layers,batch_first=True,dropout=dropout)
        
        
        # LSTM的输入:input(seq_len, batch_size, input_size) 、(初始的隐状态h_0,初始的单元状态c_0)
        # seq_len:如果一个句子有7个单词,则seq_len=7 
        # batch_size:一次性输入LSTM中的样本个数。一个轮回多少句话
        # 每个单词用一个100维向量来表示,那么这里input_size=100
        
        # h_0(num_directions * num_layers, batch_size, hidden_size)
        # c_0(num_directions * num_layers, batch_size, hidden_size)
        # 如果是双向LSTM,则num_directions=2
        # num_layers:层数
        # hidden_size:隐藏层节点个数。
        
        
        # LSTM输出由两部分组成:otput、(隐状态h_n,单元状态c_n)
        # output(seq_len, batch_size, num_directions * hidden_size)
    def forward(self,src):
        #src[batch_size,seq_len]
        src=self.embed(src)
        #src[batch_size,seq_len,emb_model]
        output,(h_n,c_n)=self.lstm(src) #没有指定h,c 就默认为0 和后面要采取强制教学做对比
        #output[batch_size,seq_len,hidden_size]  最后一层每个时间步的隐状态h_t
        
        #h_n[batch_size,n_layers,hidden_size] 最后一个时间步每层的隐状态(实际上并非这样,Pytorch机制原因)
        #c_n[batch_size,n_layers,hidden_size] 最后一个时间步每层的记忆c(实际上并非这样,Pytorch机制原因)
        
        return output,(h_n,c_n)#output的意义不大,主要是(h_n,c_n),其作为上下文向量

这里要重点提示一下的是:LSTM默认输入的是[seq_len,batch_size,embed]。若输入的是[batch_size,seq_len,embed],则需要将batch_first参数填写True。另一个值得注意的是LSTM的输出有3个变量,即output,(h_n,c_n),其中output是LSTM最后一层每个时间步的输出,h_n和_c_n为最后一个时间步每层的隐状态和记忆,其中经过batch_first以后,我们的输出是[batch_size,seq_len,hidden_sizen_direction]。但是h_n与c_n的shape均为[n_layersn_direction,batch_size,hidden_size],其并未将batch_size放于首位,以下进行编码器模型的测试与这个注意点检验:

#测试,参数
emb_model=256 #用256个数字描述一个词
hidden_size=512 #中间隐藏层为512个小点
n_layers=4 #一共四层
dropout=0.5 #置0比率
src_vocab_size=len(SRC.vocab) #词表长度

#输入样本的维度
example.src.shape
结果:torch.Size([128, 27])
#建立源端模型
enModel=Encoder(src_vocab_size,emb_model,hidden_size,n_layers,dropout)
if(cuda):
    enModel=enModel.cuda()
output,(h_n,c_n)=enModel(example.src) #对源数据进行操作
 
#只有输入input和输出output的batch会在第一维,hn和cn是不会变的。使用的时候要注意,会很容易弄混。
print('output大小,h_n大小,c_n大小:',output.shape,h_n.shape,c_n.shape)

结果:

output大小,h_n大小,c_n大小: torch.Size([128, 27, 512]) torch.Size([4, 128, 512]) torch.Size([4, 128, 512]

output(128个数表示一个词,这个句子27个词,中间隐藏层为512小点) h_n(4层,128个数表示一个词,中间隐藏层为512小点) c_n(4层,128个数表示一个词,中间隐藏层为512小点)

下面建立目标端,目标端的起始与源端几乎一样,不过与源端不一样的地方在于,目标端的输入不是特定的,其采用教学的形式,即要么自学(即上一时间步的输出是当前时间步的输入),要么教学(当前时间步的输入为目标端)。因此,在目标端中,我们无法一次性给定一个单词序列,而是一个一个单词的给入,即输入的seq_len=1。最后模型的输出我们需要将其映射到英语单词的向量空间中。还有一个值得需要提的就是lstm若不传入h和c则默认帮你创建一个全为0的h和c但是我们这里需要传入,传入的h和c不能以batch为开头!格式为[n_layers*n_direction,batch_size,hidden_size]。Pytorch为什么有了batch_first这里还不管,因为我们正常这两个参数用不到可能(个人猜测)

class Decoder(nn.Module):
    #trg_vocab_size 目标端的词汇表大小
    #emb_dim为词向量维度(我们将其设置与源端一样大小)
    #hidden_size 为目标端隐层维度(将其设置为与源端一样大小)
    #n_layers 网络层数(将其设置为一样大小)
    def __init__(self,trg_vocab_size,emb_dim,hidden_size,n_layers,dropout):
        super(Decoder,self).__init__()
        
        self.emb=nn.Embedding(trg_vocab_size,emb_dim,padding_idx=1)
        self.lstm=nn.LSTM(emb_dim,hidden_size,num_layers=n_layers,batch_first=True,dropout=dropout)
        #batch_first=True就是将batch放在第一维
        
        self.classify=nn.Linear(hidden_size,trg_vocab_size)#输入维度,输出维度
    
    def forward(self,trg,h_n,c_n):
        #trg为应该为[batch,seq_len],不过实际训练中是一个一个传入(要考虑是否采用强制教学),所以seq_len为1
        #trg真正的输入维度为[batch]
        #h_n与c_n是源端的上下文向量(若计算不指定,则默认为0(若Encoder编码中))
        #维度均为:[n_layers,batch_size,hidden_size]
        trg=trg.unsqueeze(1)
        #trg[batch,1]
        trg=self.emb(trg)
        #trg[batch,1,emb]
        output,(h_n,c_n)=self.lstm(trg,(h_n,c_n))#这里的lstm指定了h,c,因此其内部不会自己创建一个全为0的h,c
        #output[batch,1,emb]
        #h_i[1,batch,emb]
        #c_i[1,batch,emb]
        output=self.classify(output.squeeze())#output.squeeze()使得output[batch 1 emb]->[batch emb]
        #output[batch trg_vocab_size]
        return output,(h_n,c_n) #返回(h_n,c_n)是为了下一解码器继续使用

#测试,参数
trg_vocab_size = len(TRG.vocab)

Demodel=Decoder(trg_vocab_size,emb_model,hidden_size,n_layers,dropout)
if cuda:
    Demodel=Demodel.cuda()
#查看目标端的shape
print('目标端的shape:',example.trg.shape)

#结果:
#目标端的shape: torch.Size([128, 29])

trg=example.trg[:,1]#假设这一次为强制教学
 
output,(h_n,c_n) = Demodel(trg,h_n,c_n)
print('h_n的shape:',h_n.shape)
print('c_n的shape:',c_n.shape)

#结果:
#h_n的shape: torch.Size([4, 128, 512])
#c_n的shape: torch.Size([4, 128, 512])

我们用一个tensor保存每一个时间步映射到英语单词向量空间的输出(其实就是每一个Decode的输出),每一个输出所在概率最大的分类即为需要翻译的单词,我们需要遍历句子中的每一个单词。还有一个值得注意的就是,由于我们在句子开头设置的,其不参与运算。

import random#生成本次强制教学的概率
class Seq2Seq(nn.Module):
    #是一种不限输入输出长度的RNN结构, 它由编码器和解码器两部分组成, 两者的内部结构都是某类RNN, 它也被称为seq2seq架构.
    def __init__(self,encoder,decoder):
        super(Seq2Seq,self).__init__()
        self.encoder = encoder
        self.decoder = decoder
    
    def forward(self,src,trg,teach_rate=0.5):
        #src [bacth,seq_len]
        #trg  [bacth,seq_len]
        #teach_radio 强制教学的阈值
        batch_size = trg.shape[0] #一次128个词
        trg_seqlen = trg.shape[1] #句子多少个词组成
        
        #保存每次输出的结果
        outputs_save = torch.zeros(batch_size,trg_seqlen,trg_vocab_size)
        if(cuda):
            outputs_save=outputs_save.cuda()
            
        #对源端进行编码
        _,(h_n,c_n)=self.encoder(src) #output不重要 就用 _ 代替了
        
        #第一个输入到解码器中为<sos>
        trg_i=trg[:,0]
        #trg_i [batch]
        for i in range(1,trg_seqlen): #一个词一个词给i
            output,(h_n,c_n)=self.decoder(trg_i,h_n,c_n)
            #output[batch trg_vocab_size]
            outputs_save[:,i,:] = output  #将output传给save保存
            #产生一个随机概率(即是否强制教学)
            probability=random.random()
            
            #获取时间步预测的结果
            top = output.argmax(1) # 返回指定维度最大值的序号
            #top[batch]
            #下一时间步的输入
            trg_i = trg[:,i] if probability>teach_rate else top #看是否使用强制教学
        return outputs_save

#测试
model = Seq2Seq(enModel,Demodel) #就是整个模型了

if(cuda):
    model=model.cuda()

outputs = model(example.src,example.trg) #这里返回就是outputs_save

outputs.shape

结果:

torch.Size([128, 29, 5893])
#训练
from torch.optim import Adam #优化器

epochs=10
optim=Adam(model.parameters())
criterion = nn.CrossEntropyLoss(ignore_index = 1)
# 损失函数用:交叉熵损失函数     ignore_index = 1代表 pad不参与损失函数的计算 

model
Seq2Seq(
  (encoder): Encoder(
    (embed): Embedding(7853, 256, padding_idx=1)
    (lstm): LSTM(256, 512, num_layers=4, batch_first=True, dropout=0.5)
  )
  (decoder): Decoder(
    (emb): Embedding(5893, 256, padding_idx=1)
    (lstm): LSTM(256, 512, num_layers=4, batch_first=True, dropout=0.5)
    (classify): Linear(in_features=512, out_features=5893, bias=True)
  )
)
#参数初始化
def init_weights(m):
    for name, param in m.named_parameters():
        nn.init.uniform_(param.data, -0.08, 0.08) #初始化为均匀分布
        
model.apply(init_weights)
Seq2Seq(
  (encoder): Encoder(
    (embed): Embedding(7853, 256, padding_idx=1)
    (lstm): LSTM(256, 512, num_layers=4, batch_first=True, dropout=0.5)
  )
  (decoder): Decoder(
    (emb): Embedding(5893, 256, padding_idx=1)
    (lstm): LSTM(256, 512, num_layers=4, batch_first=True, dropout=0.5)
    (classify): Linear(in_features=512, out_features=5893, bias=True)
  )
)

分别建立训练和测试函数(写开),其中model.train()和model.eval()主要的作用在于在训练的时候我们dropout会随机丢弃神经元,而在测试阶段的时候,不在进行丢弃神经元。

def train(model,train_iter,optim,criterion):
    model.train()#即dropout产生作用
    epoch_loss = 0
    for i,example in enumerate(train_iter):
        # enumerate用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标
        src = example.src.permute(1,0)
        trg = example.trg.permute(1,0)
        #src[batch seqlen]
        #trg[batch seqlen]
 
        optim.zero_grad()  #先将梯度值归零
        output = model(src,trg) #output[batch trg_seqlen trq_vocab_size]
        #<sos>不参与运算,pad也不参与运算(criterion已经设置了ignore)
        output = output[:,1:,:].reshape(-1,trg_vocab_size)
        trg = trg[:,1:].reshape(-1)
        #output[batch*(trg_len-1),trg_vocab_size]
        #trg[batch*(trg_len-1)]
        loss = criterion(output,trg) # 求解loss
        loss.backward() # 反向传播求解梯度
        optim.step() #更新权重参数
        epoch_loss+=loss.item() 
    return epoch_loss/len(train_iter)

def evaluate(model,test_iter,criterion):
    model.eval()#即dropout产生作用
    epoch_loss = 0
    
    with torch.no_grad():
        #是 torch 中一个上下文管理器,在这个上下文中
        #所有操作都不会被追踪以用于求导。这样可以节省内存和加速计算。
        for i,example in enumerate(test_iter):
            
            src = example.src.permute(1,0)
            trg = example.trg.permute(1,0)
            #src[batch seqlen]
            #trg[batch seqlen]
 
 
            #即无法在进行强制教学
            output = model(src,trg,0) #output[batch trg_seqlen trq_vocab_size]
            
            #<sos>不参与运算,pad也不参与运算(criterion已经设置了ignore)
            output=output[:,1:].reshape(-1,trg_vocab_size)
            trg=trg[:,1:].reshape(-1)
            #output[batch*(trg_len-1),trg_vocab_size]
            #trg[batch*(trg_len-1)]
            loss=criterion(output,trg)
            epoch_loss+=loss.item()
 
    return epoch_loss/len(test_iter)

import time,math
#统计每个迭代器的一个训练周期:
def epoch_time(start_time, end_time):
    elapsed_time = end_time - start_time #间隔时间
    elapsed_mins = int(elapsed_time / 60)
    elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
    return elapsed_mins, elapsed_secs


#训练,我们的损失函数简单表示为:困惑度
for epoch in range(epochs):
    start_time = time.time()#开始时间
    
    train_loss = train(model,train_iterator,optim,criterion)
    valid_loss = evaluate(model,valid_iterator,criterion)
    
    end_time = time.time()#结束时间
    
    epoch_mins, epoch_secs = epoch_time(start_time, end_time)
    
    print(f'Epoch: {epoch+1:02} | Time: {epoch_mins}m {epoch_secs}s')
    print(f'\tTrain Loss: {train_loss:.3f} | Train PPL: {math.exp(train_loss):7.3f}')
    print(f'\t Val. Loss: {valid_loss:.3f} |  Val. PPL: {math.exp(valid_loss):7.3f}')
Epoch: 01 | Time: 0m 47s
	Train Loss: 5.152 | Train PPL: 172.720
	 Val. Loss: 4.859 |  Val. PPL: 128.945
Epoch: 02 | Time: 0m 47s
	Train Loss: 4.788 | Train PPL: 120.025
	 Val. Loss: 4.153 |  Val. PPL:  63.628
Epoch: 03 | Time: 0m 47s
	Train Loss: 4.516 | Train PPL:  91.456
	 Val. Loss: 3.927 |  Val. PPL:  50.748
Epoch: 04 | Time: 0m 47s
	Train Loss: 4.342 | Train PPL:  76.858
	 Val. Loss: 3.833 |  Val. PPL:  46.187
Epoch: 05 | Time: 0m 33s
	Train Loss: 4.153 | Train PPL:  63.632
	 Val. Loss: 3.671 |  Val. PPL:  39.311
Epoch: 06 | Time: 0m 29s
	Train Loss: 3.996 | Train PPL:  54.388
	 Val. Loss: 3.494 |  Val. PPL:  32.923
Epoch: 07 | Time: 0m 29s
	Train Loss: 3.892 | Train PPL:  49.000
	 Val. Loss: 3.389 |  Val. PPL:  29.635
Epoch: 08 | Time: 0m 28s
	Train Loss: 3.791 | Train PPL:  44.290
	 Val. Loss: 3.292 |  Val. PPL:  26.886
Epoch: 09 | Time: 0m 28s
	Train Loss: 3.689 | Train PPL:  40.014
	 Val. Loss: 3.216 |  Val. PPL:  24.931
Epoch: 10 | Time: 0m 29s
	Train Loss: 3.607 | Train PPL:  36.855
	 Val. Loss: 3.157 |  Val. PPL:  23.490
test_loss = evaluate(model, test_iterator, criterion)
print(f'| Test Loss: {test_loss:.3f} | Test PPL: {math.exp(test_loss):7.3f} |')
| Test Loss: 3.178 | Test PPL:  24.008 |

PPL是什么: 语言模型评价指标Perplexity_ppl指标_Joy_Shen的博客-CSDN博客

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值