农业领域自建数据集

农业领域命名实体识别数据集

使用BIO命名规则,预先定义好的命名实体类别包括病害、虫害、防治药剂、防治方法、为害症状、为害地区、作物,实体定义如表所示。

实体定义
病害农业病害名称
虫害农业虫害名称
防治药剂防治农业病虫害的药剂学名、俗名、生物防治药剂名
防治方法防治农业病虫害的农业防治方法、生物防治方法等
为害症状农业病虫害危害作物的特征
为害地区发生农业病虫害的地区
作物农作物名称及品种

标注样例如下图所示:
在这里插入图片描述
现将自建的数据集公开,供各位同仁使用及指正以作学术研究之用,欢迎大家补充数据集,github网址如下:https://github.com/shenjie-hyc/CropDiseaseNer

图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
### 关于病蚕数据集的信息 目前公开可用的病蚕数据集较为有限,通常这类特定领域的小众数据集可能不会广泛存在于公共平台中。然而,可以通过一些途径获取或定制此类数据集: #### 1. **科研机构合作** 许多农业研究机构专注于害虫识别和农作物健康监测的研究工作。这些机构可能会拥有与病蚕相关的图像或其他形式的数据集合。可以尝试联系从事家蚕疾病研究的相关高校实验室或者研究所,寻求合作机会[^1]。 #### 2. **开源数据集平台** 尽管专门针对病蚕的数据集较少见,但仍可探索通用昆虫或动物病理学方面的开放资源库。例如 Kaggle、Figshare 和 Zenodo 这些平台上有时会发布由研究人员上传的独特专题数据集。如果未找到现成匹配项,则可通过提议共同开发新项目来促进该领域的发展[^2]。 #### 3. **自建数据采集方案** 当无法获得已有合适数据时,建立自己的数据收集体系成为另一种可行办法。这包括但不限于拍摄患病蚕宝宝样本照片,并运用前述提到的各种预处理手段如旋转、裁剪等增加多样性以构建训练所需的充足素材量级达到至少每种类别500张以上标准。 以下是实现自动化标注流程的一个简单 Python 脚本示例: ```python import os from PIL import Image, ImageOps def preprocess_image(input_path, output_dir): img = Image.open(input_path) # Random rotation between 0 to 30 degrees angle = random.randint(0, 30) rotated_img = img.rotate(angle) # Save processed image into the specified directory base_name = os.path.basename(input_path).split('.')[0] new_file_name = f"{base_name}_rotated_{angle}.jpg" full_output_path = os.path.join(output_dir, new_file_name) rotated_img.save(full_output_path) # Example usage of function with a single file path and destination folder preprocess_image('/path/to/your/image.jpg', '/desired/output/directory/') ``` 此脚本能帮助快速扩充基础图片资料至满足机器学习算法需求的程度。 --- ####
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值