poj1050 To the Max

给定正整数和负整数的二维数组,子矩形是位于整个数组中的任意大小为1*1或更大的连续子数组。矩形的和是该矩形中所有元素的和。在这个问题中,具有最大和的子矩形称为最大子矩形。
例如,数组的最大子矩形:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
位于左下角:

9 2
-4 1
-1 8
并且有一个15的总和。
输入

输入由整数的N*N数组组成。输入从直线上的单个正整数N开始,表示正方形二维数组的大小。后面是N2整数,用空格(空格和换行符)分隔。这些是数组的N2整数,按行的主要顺序表示.也就是说,第一行中的所有数字,从左到右,然后第二行中的所有数字,从左到右,等等,n可能高达100。数组中的数字将在[-127,127]范围内。
输出量

输出最大子矩形的和。

样本输入

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2
样本输出

15

//原数组 -1 -4 3
//        3 4 -1
//   	 -5 -2 8 


//a[i][j]
// -1 -4 3
// 2  0  2
//-3 -2 10
#include <bits/stdc++.h>
using namespace std;
int main() {
    int n,a[505][505],sum=-0x3f3f3f3f;
    cin>>n;
    for (int i = 1; i<=n; i++) {
        for (int j = 1; j<=n; j++){
            cin>>a[i][j];
            a[i][j]+=a[i-1][j];a[i][j]为前 i 行 j列的前缀和
        }
    }
     for(int i=1;i<=n;i++){ //枚举 从 子阵行高  按 最大子段 原理 求和
        for (int j = i; j<=n; j++){
            int ans=0;
            for (int k = 1; k<=n; k++){
                ans+=a[j][k]-a[i-1][k];
              if(ans>sum)sum=ans;//先判断 防 全为负数情况 更新 最大值
              if(ans<0)ans=0;//因为是连续的,当前小于0 则重新开始; 
          }
      }
  }
  printf("%d",sum);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值