给定正整数和负整数的二维数组,子矩形是位于整个数组中的任意大小为1*1或更大的连续子数组。矩形的和是该矩形中所有元素的和。在这个问题中,具有最大和的子矩形称为最大子矩形。
例如,数组的最大子矩形:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
位于左下角:
9 2
-4 1
-1 8
并且有一个15的总和。
输入
输入由整数的N*N数组组成。输入从直线上的单个正整数N开始,表示正方形二维数组的大小。后面是N2整数,用空格(空格和换行符)分隔。这些是数组的N2整数,按行的主要顺序表示.也就是说,第一行中的所有数字,从左到右,然后第二行中的所有数字,从左到右,等等,n可能高达100。数组中的数字将在[-127,127]范围内。
输出量
输出最大子矩形的和。
样本输入
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
样本输出
15
//原数组 -1 -4 3
// 3 4 -1
// -5 -2 8
//a[i][j]
// -1 -4 3
// 2 0 2
//-3 -2 10
#include <bits/stdc++.h>
using namespace std;
int main() {
int n,a[505][505],sum=-0x3f3f3f3f;
cin>>n;
for (int i = 1; i<=n; i++) {
for (int j = 1; j<=n; j++){
cin>>a[i][j];
a[i][j]+=a[i-1][j];a[i][j]为前 i 行 j列的前缀和
}
}
for(int i=1;i<=n;i++){ //枚举 从 子阵行高 按 最大子段 原理 求和
for (int j = i; j<=n; j++){
int ans=0;
for (int k = 1; k<=n; k++){
ans+=a[j][k]-a[i-1][k];
if(ans>sum)sum=ans;//先判断 防 全为负数情况 更新 最大值
if(ans<0)ans=0;//因为是连续的,当前小于0 则重新开始;
}
}
}
printf("%d",sum);
return 0;
}