目录
A-Q老师与石头剪刀布
题目:
每一个大人曾经都是一个小孩,Q老师 也一样。
为了回忆童年,Q老师 和 Monika 玩起了石头剪刀布的游戏,游戏一共 n 轮。无所不知的 Q老师知道每一轮 Monika 的出招,然而作为限制, Q老师 在这 n 轮游戏中必须恰好出 a 次石头,b 次布和 c 次剪刀。
如果 Q老师赢了 Monika n/2(上取整) 次,那么 Q老师就赢得了这场游戏,否则 Q老师就输啦!
Q老师非常想赢,他想知道能否可以赢得这场游戏,如果可以的话,Q老师希望你能告诉他一种可以赢的出招顺序,任意一种都可以。
Input:
第一行一个整数 t(1 ≤ t ≤ 100)表示测试数据组数。然后接下来的 t 组数据,每一组都有三个整数:
第一行一个整数 n(1 ≤ n ≤ 100)。
第二行包含三个整数 a, b, c(0 ≤ a, b, c ≤ n)。保证 a+b+c=n。
第三行包含一个长度为 n 的字符串 s,字符串 s 由且仅由 'R', 'P', 'S' 这三个字母组成。第 i 个字母 s[i] 表示 Monika 在第 i 轮的出招。字母 'R' 表示石头,字母 'P' 表示布,字母 'S' 表示剪刀。
Output:
对于每组数据:
如果 Q老师不能赢,则在第一行输出 "NO"(不含引号)。
否则在第一行输出 "YES"(不含引号),在第二行输出 Q老师的出招序列 t。要求 t 的长度为 n 且仅由 'R', 'P', 'S' 这三个字母构成。t 中需要正好包含 a 个 'R',b 个 'P' 和 c 个 'S'。
"YES"/"NO"是大小写不敏感的,但是 'R', 'P', 'S' 是大小写敏感的。
Example:
Input:
2
3
1 1 1
RPS
3
3 0 0
RPS
Output:
YES
PSR
NO
题目分析:
因为要尽可能地让Q老师石头剪刀布的赢的次数多,而且Q老师又提前知道对方的出招序列,所以从全局出发,先尽可能地让Q老师在满足题给的a,b,c的条件下,找到所有能赢的局面,而后剩余的从剩下的出招方式中任意选择即可(因为这已经影响不了获胜次数了)。
要注意的有两点:
- 一定是要找出所有能赢的局面,而不能走一步看一步,因为这样会对后面产生影响从而得不到最高的获胜次数。
- 谨慎使用memset初始化,memset虽然使用方便,但总会让你卡在奇奇怪怪的点,(我因为这个memset卡在wrong answer on test3卡了好久好久!!)简单的for循环初始化安全又稳妥。
代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
bool win[110];
char ans[110];
int main()
{
int t;
cin>>t;
int n;
int a,b,c;
string s;
while(t--)
{
cin>>n;
cin>>a>>b>>c;
cin>>s;
int sum=0;
string x="";
for(int i=0;i<n;i++)
{
win[i]=false;
}
for(int i=0;i<n;i++)
{
if(s[i]=='R')
{
if(b>0)
{
b--;
sum++;
win[i]=true;
}
}
else if(s[i]=='P')
{
if(c>0)
{
c--;
sum++;
win[i]=true;
}
}
else if(s[i]=='S')
{
if(a>0)
{
a--;
sum++;
win[i]=true;
}
}
}
if(sum>=ceil(n/2.0))
{
cout<<"YES"<<endl;
for(int i=0;i<n;i++)
{
if(win[i]==true)
{
if(s[i]=='R')
{
x+='P';
}
else if(s[i]=='P')
{
x+='S';
}
else if(s[i]=='S')
{
x+='R';
}
}
else
{
if(a>0)
{
a--;
x+='R';
}
else if(b>0)
{
b--;
x+='P';
}
else if(c>0)
{
c--;
x+='S';
}
}
}
for(int i=0;i<n;i++)
{
cout<<x[i];
}
cout<<endl;
}
else
{
cout<<"NO"<<endl;
}
}
return 0;
}
B-Q老师与十字叉
题目:
Q老师得到一张 n 行 m 列的网格图,上面每一个格子要么是白色的要么是黑色的。
Q老师认为失去了十字叉 的网格图莫得灵魂. 一个十字叉可以用一个数对 x 和 y 来表示, 其中 1 ≤ x ≤ n 并且 1 ≤ y ≤ m, 满足在第 x 行中的所有格子以及在第 y 列的所有格子都是黑色的。
例如下面这5个网格图里都包含十字叉:
第四个图有四个十字叉,分别在 (1, 3), (1, 5), (3, 3) 和 (3, 5).。
下面的图里没有十字叉:
Q老师 得到了一桶黑颜料,他想为这个网格图注入灵魂。 Q老师每分钟可以选择一个白色的格子并且把它涂黑。现在他想知道要完成这个工作,最少需要几分钟?
Input:
第一行包含一个整数 q (1 ≤ q ≤ 5 * 10^4) — 表示测试组数。
对于每组数据:
第一行有两个整数 n 和 m (1 ≤ n, m ≤ 5 * 10^4, n * m ≤ 4 * 10^5) — 表示网格图的行数和列数
接下来的 n 行中每一行包含 m 个字符 — '.' 表示这个格子是白色的, '*' 表示这个格子是黑色的
保证 q 组数据中 n 的总和不超过 5 * 10^4, n*m 的总和不超过 4 * 10^5。
Output:
答案输出 q 行, 第 i 行包含一个整数 — 表示第 i 组数据的答案。
Example:
Input:
9
5 5
..*..
..*..
*****
..*..
..*..
3 4
****
.*..
.*..
4 3
***
*..
*..
*..
5 5
*****
*.*.*
*****
..*.*
..***
1 4
****
5 5
.....
..*..
.***.
..*..
.....
5 3
...
.*.
.*.
***
.*.
3 3
.*.
*.*
.*.
4 4
*.**
....
*.**
*.**
Output:
0
0
0
0
0
4
1
1
2
题目分析:
- 首先网格的行数和列数n,m的数据范围为5e4,构建二维数组的话会超过范围不可行,所以将二维数组映射到一维数组,映射方式为i*m+j。
- 其次题目要找出完成十字叉的最少步数,那么暴力的对每一个点进行完成十字叉需要步数的计算。计算需要用到的是其所在行和所在列的空白格数,所以分别遍历计算出每行每列的空白格数。
- 然后对于本身黑格的点,其完成十字叉,需要把行和列的空白格都涂黑,所以**ans=min(ans,row[i]+col[j])**;对于本身白格的点,因为行列交叉重复计算了该白格一次,所以**ans=min(ans,row[i]+col[j]-1)**。
(又是memset,对于数组的初始化用memset的话会报错Time LImit Eceed!!慎用memset)
代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn=4e5+5;
const int maxm=5e4+5;
const int inf=1e8+8;
char a[maxn];
int row[maxn];
int col[maxn];
int main()
{
int q;
cin>>q;
int n,m;
while(q--)
{
cin>>n>>m;
//memset(row,0,sizeof(row));
//memset(col,0,sizeof(col));
for(int i=0;i<n;i++)//记录每一行的白格数
{
int j=m*i;row[i]=0;
for(j;j<m*(i+1);j++)
{
cin>>a[j];
if(a[j]=='.')
{
row[i]++;
}
}
}
for(int i=0;i<m;i++)//记录每一列的白格数
{
int j=i;col[i]=0;
for(j;j<n*m;j=j+m)
{
if(a[j]=='.')
{
col[i]++;
}
}
}
int k=0;int ans=inf;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
if(a[i*m+j]=='*')
{
ans=min(ans,row[i]+col[j]);
}
else
{
ans=min(ans,row[i]+col[j]-1);
}
}
}
cout<<ans<<endl;
}
return 0;
}
C-Q老师的考验
题目:
Q老师对数列有一种非同一般的热爱,尤其是优美的斐波那契数列。
这一天,Q老师为了增强大家对于斐波那契数列的理解,决定在斐波那契的基础上创建一个新的数列 f(x) 来考一考大家。
数列 f(x) 定义如下:
当 x < 10 时,f(x) = x;
当 x ≥ 10 时,f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10),ai 只能为 0 或 1。
Q老师 将给定 a0~a9,以及两个正整数 k m,询问 f(k) % m 的数值大小。
聪明的你能通过 Q老师的考验吗?
Input:
输出文件包含多组测试用例,每组测试用例格式如下:
第一行给定两个正整数 k m。(k < 2e9, m < 1e5)
第二行给定十个整数,分别表示 a0~a9。
Output:
对于每一组测试用例输出一行,表示 f(k) % m 的数值大小。
Sample Input:
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
Sample Output:
45
104
题目分析:
因为N特别大,所以考虑线性递推的方式采用矩阵快速幂求解。
所以需要构建矩阵,构建矩阵过程如图:
然后首先初始化矩阵幂原始矩阵(也就是图中红色破浪线矩阵)并进行(k-9)的矩阵快速幂操作得到一个新的矩阵,最后求解出要求的 f(k) % m 即可。
代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int n=10;
int k,m;
struct Matrix
{
int x[n][n];
Matrix operator*(const Matrix& t) const
{
Matrix re;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
re.x[i][j]=0;
for(int k=0;k<n;k++)
{
re.x[i][j]+=x[i][k]*t.x[k][j]%m;
re.x[i][j]%=m;
}
}
}
return re;
}
Matrix(){memset(x,0,sizeof(x));}
Matrix(const Matrix &t){memcpy(x,t.x,sizeof(x));}
};
Matrix quick_pow(Matrix a,int x)
{
Matrix re;
for(int i=0;i<=9;i++)
{
re.x[i][i]=1;
}
while(x)
{
if(x&1) re=re*a;
a=a*a;
x>>=1;
}
return re;
}
int main()
{
int ans;
while(cin>>k>>m)
{
Matrix a;
ans=0;
for(int i=0;i<=9;i++)
{
cin>>a.x[0][i];
}
for(int i=1;i<=9;i++)
{
a.x[i][i-1]=1;
}
if(k<=9)
{
ans=k%m;
}
else if(k>=10)
{
a=quick_pow(a,k-9);
for(int i=0;i<=9;i++)
{
ans+=(a.x[0][i]*(9-i))%m; ans%=m;
}
}
cout<<ans<<endl;
}
return 0;
}