week14作业-必做题

目录

A-Q老师与石头剪刀布#

题目:

Input:

Output:

Example:

Input:

Output:

题目分析:

代码:

 B-Q老师与十字叉

 题目:

Input:

Output:

Example:

Input:

Output

题目分析:

代码:

C-Q老师的考验

题目:

Input:

Output:

Sample Input:

Sample Output:

题目分析:

代码:



A-Q老师与石头剪刀布

题目:

每一个大人曾经都是一个小孩,Q老师 也一样。
为了回忆童年,Q老师 和 Monika 玩起了石头剪刀布的游戏,游戏一共 n 轮。无所不知的 Q老师知道每一轮 Monika 的出招,然而作为限制, Q老师 在这 n 轮游戏中必须恰好出 a 次石头,b 次布和 c 次剪刀。
如果 Q老师赢了 Monika n/2(上取整) 次,那么 Q老师就赢得了这场游戏,否则 Q老师就输啦!
Q老师非常想赢,他想知道能否可以赢得这场游戏,如果可以的话,Q老师希望你能告诉他一种可以赢的出招顺序,任意一种都可以。

Input:

第一行一个整数 t(1 ≤ t ≤ 100)表示测试数据组数。然后接下来的 t 组数据,每一组都有三个整数:
第一行一个整数 n(1 ≤ n ≤ 100)。
第二行包含三个整数 a, b, c(0 ≤ a, b, c ≤ n)。保证 a+b+c=n。
第三行包含一个长度为 n 的字符串 s,字符串 s 由且仅由 'R', 'P', 'S' 这三个字母组成。第 i 个字母 s[i] 表示 Monika 在第 i 轮的出招。字母 'R' 表示石头,字母 'P' 表示布,字母 'S' 表示剪刀。

Output:

对于每组数据:
如果 Q老师不能赢,则在第一行输出 "NO"(不含引号)。
否则在第一行输出 "YES"(不含引号),在第二行输出 Q老师的出招序列 t。要求 t 的长度为 n 且仅由 'R', 'P', 'S' 这三个字母构成。t 中需要正好包含 a 个 'R',b 个 'P' 和 c 个 'S'。
"YES"/"NO"是大小写不敏感的,但是 'R', 'P', 'S' 是大小写敏感的。

Example:

Input:

 2
 3
 1 1 1
 RPS
 3
 3 0 0
 RPS

Output:

 

   YES
   PSR
   NO

题目分析:


因为要尽可能地让Q老师石头剪刀布的赢的次数多,而且Q老师又提前知道对方的出招序列,所以从全局出发,先尽可能地让Q老师在满足题给的a,b,c的条件下,找到所有能赢的局面,而后剩余的从剩下的出招方式中任意选择即可(因为这已经影响不了获胜次数了)。

要注意的有两点:

 - 一定是要找出所有能赢的局面,而不能走一步看一步,因为这样会对后面产生影响从而得不到最高的获胜次数。
 - 谨慎使用memset初始化,memset虽然使用方便,但总会让你卡在奇奇怪怪的点,(我因为这个memset卡在wrong answer on test3卡了好久好久!!)简单的for循环初始化安全又稳妥。

代码:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h> 
using namespace std;
bool win[110];
char ans[110]; 
int main()
{
    int t;
    cin>>t;    
    int n;
    int a,b,c;
    string s;
    while(t--)
    {
        cin>>n;
        cin>>a>>b>>c;
        cin>>s;
        int sum=0;
        string x="";
        for(int i=0;i<n;i++)
        {
            win[i]=false;
        }
        for(int i=0;i<n;i++)
        {
            if(s[i]=='R')
            {
                if(b>0)
                {
                    b--;
                    sum++;
                    win[i]=true;
                }
            }
            else if(s[i]=='P')
            {
                if(c>0)
                {
                    c--;    
                    sum++;
                    win[i]=true;
                }
            }
            else if(s[i]=='S')
            {
                if(a>0)
                {
                    a--;    
                    sum++;
                    win[i]=true;
                }
            }
        }
        if(sum>=ceil(n/2.0))
        {
            cout<<"YES"<<endl;
            for(int i=0;i<n;i++)
            {
                if(win[i]==true)
                {
                    if(s[i]=='R')
                    {
                        x+='P';
                    }
                    else if(s[i]=='P')
                    {
                        x+='S';
                    }
                    else if(s[i]=='S')
                    {
                        x+='R';
                    }    
                }
                else
                {
                    if(a>0)
                    {
                        a--;    
                        x+='R';
                    }
                    else if(b>0)
                    {
                        b--;    
                        x+='P';
                    }
                    else if(c>0)
                    {
                        c--;
                        x+='S';
                    }
                }
            }
            for(int i=0;i<n;i++)
            {
                cout<<x[i];
            }
            cout<<endl;
        }
        else
        {
            cout<<"NO"<<endl;
        }
    }
    return 0;    
}

 

B-Q老师与十字叉

题目:

Q老师得到一张 n 行 m 列的网格图,上面每一个格子要么是白色的要么是黑色的。 
Q老师认为失去了十字叉 的网格图莫得灵魂. 一个十字叉可以用一个数对 x 和 y 来表示, 其中 1 ≤ x ≤ n 并且 1 ≤ y ≤ m, 满足在第 x 行中的所有格子以及在第 y 列的所有格子都是黑色的。
例如下面这5个网格图里都包含十字叉:

 
第四个图有四个十字叉,分别在 (1, 3), (1, 5), (3, 3) 和 (3, 5).。
下面的图里没有十字叉:

 
Q老师 得到了一桶黑颜料,他想为这个网格图注入灵魂。 Q老师每分钟可以选择一个白色的格子并且把它涂黑。现在他想知道要完成这个工作,最少需要几分钟?

Input:

第一行包含一个整数 q (1 ≤ q ≤ 5 * 10^4) — 表示测试组数。
对于每组数据: 
第一行有两个整数 n 和 m (1 ≤ n, m ≤ 5 * 10^4, n * m ≤ 4 * 10^5) — 表示网格图的行数和列数
接下来的 n 行中每一行包含 m 个字符 — '.' 表示这个格子是白色的, '*' 表示这个格子是黑色的
保证 q 组数据中 n 的总和不超过 5 * 10^4, n*m 的总和不超过 4 * 10^5。

Output:

答案输出 q 行, 第 i 行包含一个整数 — 表示第 i 组数据的答案。

Example:

Input:

  

    9
    5 5
    ..*..
    ..*..
    *****
    ..*..
    ..*..
    3 4
    ****
    .*..
    .*..
    4 3
    ***
    *..
    *..
    *..
    5 5
    *****
    *.*.*
    *****
    ..*.*
    ..***
    1 4
    ****
    5 5
    .....
    ..*..
    .***.
    ..*..
    .....
    5 3
    ...
    .*.
    .*.
    ***
    .*.
    3 3
    .*.
    *.*
    .*.
    4 4
    *.**
    ....
    *.**
    *.**

Output:

 

    0
    0
    0
    0
    0
    4
    1
    1
    2


题目分析:

 - 首先网格的行数和列数n,m的数据范围为5e4,构建二维数组的话会超过范围不可行,所以将二维数组映射到一维数组,映射方式为i*m+j。
 - 其次题目要找出完成十字叉的最少步数,那么暴力的对每一个点进行完成十字叉需要步数的计算。计算需要用到的是其所在行和所在列的空白格数,所以分别遍历计算出每行每列的空白格数。
 - 然后对于本身黑格的点,其完成十字叉,需要把行和列的空白格都涂黑,所以**ans=min(ans,row[i]+col[j])**;对于本身白格的点,因为行列交叉重复计算了该白格一次,所以**ans=min(ans,row[i]+col[j]-1)**。
 
 (又是memset,对于数组的初始化用memset的话会报错Time LImit Eceed!!慎用memset)

代码:

#include<iostream>
#include<stdio.h>
#include<string.h> 
#include<algorithm> 
using namespace std;
const int maxn=4e5+5;
const int maxm=5e4+5;
const int inf=1e8+8;
char a[maxn];
int row[maxn];
int col[maxn];
int main()
{
    int q;
    cin>>q;
    int n,m;
    while(q--)
    {
        cin>>n>>m;
        //memset(row,0,sizeof(row));
        //memset(col,0,sizeof(col));
        for(int i=0;i<n;i++)//记录每一行的白格数 
        {
            int j=m*i;row[i]=0;
            for(j;j<m*(i+1);j++)
            {
                cin>>a[j];
                if(a[j]=='.')
                {
                    row[i]++;
                }
            }
        }
        for(int i=0;i<m;i++)//记录每一列的白格数 
        {
            int j=i;col[i]=0;
            for(j;j<n*m;j=j+m)
            {
                if(a[j]=='.')
                {
                    col[i]++;
                }
            }
        }
        int k=0;int ans=inf;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<m;j++)
            {
                if(a[i*m+j]=='*')
                {
                    ans=min(ans,row[i]+col[j]);    
                }
                else
                {
                    ans=min(ans,row[i]+col[j]-1);    
                }
            }
        }
        cout<<ans<<endl;
    }
    return 0; 
} 

 

C-Q老师的考验

题目:

Q老师对数列有一种非同一般的热爱,尤其是优美的斐波那契数列。
这一天,Q老师为了增强大家对于斐波那契数列的理解,决定在斐波那契的基础上创建一个新的数列 f(x) 来考一考大家。
数列 f(x) 定义如下:
当 x < 10 时,f(x) = x;
当 x ≥ 10 时,f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10),ai 只能为 0 或 1。
Q老师 将给定 a0~a9,以及两个正整数 k m,询问 f(k) % m 的数值大小。
聪明的你能通过 Q老师的考验吗?

Input:

输出文件包含多组测试用例,每组测试用例格式如下:
第一行给定两个正整数 k m。(k < 2e9, m < 1e5)
第二行给定十个整数,分别表示 a0~a9。

Output:

对于每一组测试用例输出一行,表示 f(k) % m 的数值大小。

Sample Input:

 

    10 9999
    1 1 1 1 1 1 1 1 1 1
    20 500
    1 0 1 0 1 0 1 0 1 0

Sample Output:

 

    45
    104


题目分析:


因为N特别大,所以考虑线性递推的方式采用矩阵快速幂求解。
所以需要构建矩阵,构建矩阵过程如图:

然后首先初始化矩阵幂原始矩阵(也就是图中红色破浪线矩阵)并进行(k-9)的矩阵快速幂操作得到一个新的矩阵,最后求解出要求的 f(k) % m 即可。

代码:

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int n=10;
int k,m;
struct Matrix
{
    int x[n][n];
    Matrix operator*(const Matrix& t) const
    {
        Matrix re;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                re.x[i][j]=0;
                for(int k=0;k<n;k++)
                {
                    re.x[i][j]+=x[i][k]*t.x[k][j]%m;
                    re.x[i][j]%=m;
                }
            }
        }
        return re;
    }
    Matrix(){memset(x,0,sizeof(x));}
    Matrix(const Matrix &t){memcpy(x,t.x,sizeof(x));}
};
Matrix quick_pow(Matrix a,int x)
{
    Matrix re;
    for(int i=0;i<=9;i++)
    {
        re.x[i][i]=1;
    } 
    while(x)
    {
        if(x&1)    re=re*a;
        a=a*a;
        x>>=1; 
    }
    return re;
}
int main()
{
    int ans;
    while(cin>>k>>m)
    {
        Matrix a;
        ans=0;
        for(int i=0;i<=9;i++)
        {
            cin>>a.x[0][i];
        }
        for(int i=1;i<=9;i++)
        {
            a.x[i][i-1]=1;
        }
        if(k<=9)
        {
            ans=k%m;
        }
        else if(k>=10)
        {
            a=quick_pow(a,k-9);
            for(int i=0;i<=9;i++)
            {
                ans+=(a.x[0][i]*(9-i))%m;    ans%=m;
            } 
        }
        cout<<ans<<endl;
    }
    return 0;
} 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值