SENet架构-通道注意力机制

60 篇文章 92 订阅 ¥19.90 ¥99.00
26 篇文章 25 订阅 ¥19.90 ¥99.00
SENet(Squeeze-and-Excitation Networks)是2017年ImageNet图像识别比赛的冠军模型,它通过引入通道注意力机制优化特征提取。SENet在ResNet和Inception等模型中加入SE Block,通过全局平均池化和全连接层调整特征图权重,从而增强重要特征并抑制次要特征。实验表明,SE模块能提高模型性能,而计算量增加不多。
摘要由CSDN通过智能技术生成

参考论文:Squeeze-and-Excitation Networks

作者:Jie Hu,Li Shen,Samuel Albanie,Gang Sun,Enhua Wu

论文中给出的源码链接:https://github.com/hujie-frank/SENet

1、SeNet简介

  SENet 是 ImageNet Challenge 图像识别比赛 2017 年的冠军,是来自 Momenta 公司 的团队完成。他们提出了 Squeeze-and-Excitation Networks(简称 SENet)。SENet 不是独立的模型设计,只对模型的一种优化。一般 SENet 都会结合其它模型一起使用,比如 SENet 用于 ResNet-50 中我们就把这个模型称为 SE-ResNet-50,比如 SENet 用于 Inception-ResNet-v2 中我们就把这个模型称为 SE- Inception-ResNet-v2。最早提出 SENet 的论文是《Squeeze-and

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别团等shy哥发育

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>