目录
时频分析
1、基于STFT的时频分析
传统上,我们常用傅里叶变换来观察一个讯号的频谱。然而,这样的方法不适合用来分析一个频率会随着时间而改变的信号。
比如说任务态的脑电数据ERP,诱发电位它是随着时间会发生变化的,所以不适合单纯使用频域分析(可以进行时域分析)。
时频分析方法提供了时间域与频率域的联合分布信息,清楚地描述了信号频率随时间变化的关系。
短时傅里叶变换的基本原理就是将分段数据加窗(window),做快速傅里叶变换(fft),在分段就会有重叠(noverlap),因此一个向量的短时傅里叶变换结果是一个矩阵(S)。它对高频数据不太友好。
短时傅里叶变换的窗口一般是400-500ms,因为如果窗口太大,对非常快的变化不敏感。
2、画时频图、地形图
stft得到时频数据之后,可以画出时频图,分析能量在刺激呈现之前和之后之后是否有变化
怎么确定地形图的时间和频段范围?通过时频图可以知道哪个地方有明显的红色和蓝色,可以根据时频图定义感兴趣的时间和频段。对时间、频率做平均,画出这段时频范围内的地形图。
3、比较分析
ps:
时频分析中既可能包含锁时锁相(诱发)的信息,也可能包含锁时非锁相(引发)的信息,要计算ITPC才 能判断是哪种信息。
锁时非锁相(引发)的信息在时域上没法分析,只能做时频分析,
但是锁时锁相(诱发)的信息是时域分析和时频分析都可以做。
4、关于多重比较校正
什么是多重比较,什么是FDR校正呢?
- 多重比较是统计学中的术语。当我们进行多次统计检验后,假阳性的次数就会增多,所以要对假阳性进行校正。
- 先解释一些概念:以任务态数据为例,先看一个体素。
- 原假设(H0):该体素没有激活。
- 从原假设基础上进行统计推断,得到P=0.02 < 0.05。所以我们拒绝原假设,然后推断出该体素激活。请注意:我们推断的这个结果有可能是错的,也就是说有可能错误地拒绝了原假设。
- 这种犯错误的概率称之为假阳性率。
- 这个例子里面假阳性率=2%,也就是说该体素激活的这种推断有2%的概率是错的。我们一般显著性水平设置为P=0.05。那么在1000次假设检验中,假阳性的结果就有1000*0.05=50次。
- 我们希望的是假阳性是越少越好,所以要对假阳性进行校正。这个过程就称之为多重比较校正。
常用方法:
- 控制总体I型错误,最常用的方法Bonferroni法,其基本原理为:若进行了n次检验,检验水准α应校正为α/n,或将P值乘以n后再与α比较。比如,某试验具有三个终点,则采用Bonferroni法进行多重性校正后的检验水准α’= 0.05/3 = 0.0167。
fwe控制至少犯一次错的概率
Fdr 错误发现的概率