高中数学:三角化简的公式及做题技巧总结

常用公式

  1. 同角三角函数的基本关系

    • 平方关系
      • sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^{2}\alpha+\cos^{2}\alpha = 1 sin2α+cos2α=1
      • 1 + tan ⁡ 2 α = sec ⁡ 2 α 1+\tan^{2}\alpha=\sec^{2}\alpha 1+tan2α=sec2α
      • 1 + cot ⁡ 2 α = csc ⁡ 2 α 1+\cot^{2}\alpha=\csc^{2}\alpha 1+cot2α=csc2α
    • 商数关系
      • tan ⁡ α = sin ⁡ α cos ⁡ α \tan\alpha=\frac{\sin\alpha}{\cos\alpha} tanα=cosαsinα
      • cot ⁡ α = cos ⁡ α sin ⁡ α \cot\alpha=\frac{\cos\alpha}{\sin\alpha} cotα=sinαcosα
  2. 诱导公式

    • 口诀:奇变偶不变,符号看象限。即若角度为 π 2 \frac{\pi}{2} 2π的奇数倍,则函数名要变(正弦变余弦、余弦变正弦等);若为偶数倍,则函数名不变。符号根据原函数在变化后的角度所在象限的正负来确定。例如:
      • sin ⁡ ( π 2 + α ) = cos ⁡ α \sin(\frac{\pi}{2}+\alpha)=\cos\alpha sin(2π+α)=cosα
      • sin ⁡ ( π − α ) = sin ⁡ α \sin(\pi-\alpha)=\sin\alpha sin(πα)=sinα
      • cos ⁡ ( π + α ) = − cos ⁡ α \cos(\pi + \alpha)=-\cos\alpha cos(π+α)=cosα
      • tan ⁡ ( − α ) = − tan ⁡ α \tan(-\alpha)=-\tan\alpha tan(α)=tanα
  3. 两角和与差的三角函数公式

    • sin ⁡ ( A ± B ) = sin ⁡ A cos ⁡ B ± cos ⁡ A sin ⁡ B \sin(A\pm B)=\sin A\cos B\pm\cos A\sin B sin(A±B)=sinAcosB±cosAsinB
    • cos ⁡ ( A ± B ) = cos ⁡ A cos ⁡ B ∓ sin ⁡ A sin ⁡ B \cos(A\pm B)=\cos A\cos B\mp\sin A\sin B cos(A±B)=cosAcosBsinAsinB
    • tan ⁡ ( A ± B ) = tan ⁡ A ± tan ⁡ B 1 ∓ tan ⁡ A tan ⁡ B \tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B} tan(A±B)=1tanAtanBtanA±tanB
  4. 二倍角公式

    • sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α \sin2\alpha = 2\sin\alpha\cos\alpha sin2α=2sinαcosα
    • cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α \cos2\alpha=\cos^{2}\alpha-\sin^{2}\alpha = 2\cos^{2}\alpha - 1=1 - 2\sin^{2}\alpha cos2α=cos2αsin2α=2cos2α1=12sin2α
    • tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan2\alpha=\frac{2\tan\alpha}{1-\tan^{2}\alpha} tan2α=1tan2α2tanα
  5. 降幂公式

    • sin ⁡ 2 α = 1 − cos ⁡ 2 α 2 \sin^{2}\alpha=\frac{1 - \cos2\alpha}{2} sin2α=21cos2α
    • cos ⁡ 2 α = 1 + cos ⁡ 2 α 2 \cos^{2}\alpha=\frac{1 + \cos2\alpha}{2} cos2α=21+cos2α
  6. 辅助角公式

    • a sin ⁡ α + b cos ⁡ α = a 2 + b 2 sin ⁡ ( α + φ ) a\sin\alpha + b\cos\alpha=\sqrt{a^{2}+b^{2}}\sin(\alpha+\varphi) asinα+bcosα=a2+b2 sin(α+φ),其中 tan ⁡ φ = b a \tan\varphi=\frac{b}{a} tanφ=ab。例如, 3 sin ⁡ x + 4 cos ⁡ x = 5 sin ⁡ ( x + φ ) 3\sin x + 4\cos x = 5\sin(x + \varphi) 3sinx+4cosx=5sin(x+φ),其中 tan ⁡ φ = 4 3 \tan\varphi=\frac{4}{3} tanφ=34
  7. 半角公式

    • 正弦半角公式 sin ⁡ α 2 = ± 1 − cos ⁡ α 2 \sin\frac{\alpha}{2}=\pm\sqrt{\frac{1 - \cos\alpha}{2}} sin2α=±21cosα
    • 余弦半角公式 cos ⁡ α 2 = ± 1 + cos ⁡ α 2 \cos\frac{\alpha}{2}=\pm\sqrt{\frac{1 + \cos\alpha}{2}} cos2α=±21+cosα
    • 正切半角公式 tan ⁡ α 2 = ± 1 − cos ⁡ α 1 + cos ⁡ α = sin ⁡ α 1 + cos ⁡ α = 1 − cos ⁡ α sin ⁡ α \tan\frac{\alpha}{2}=\pm\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}=\frac{\sin\alpha}{1 + \cos\alpha}=\frac{1 - \cos\alpha}{\sin\alpha} tan2α=±1+cosα1cosα =1+cosαsinα=sinα1cosα可用于将半角的三角函数与整角的三角函数相互转化,在化简中根据具体情况选择使用。
  8. 和差化积公式

    • sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin\alpha+\sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ
    • sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 \sin\alpha-\sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} sinαsinβ=2cos2α+βsin2αβ
    • cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos\alpha+\cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ
    • cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ
  9. 积化和差公式

    • sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]
    • cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)sin(αβ)]
    • cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]
    • sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin\alpha\sin\beta=-\frac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)] sinαsinβ=21[cos(α+β)cos(αβ)]

做题技巧

  1. 观察式子特点
    • 看函数名:若式子中三角函数名种类多,可利用同角三角函数关系或诱导公式统一函数名。比如式子中有 sin ⁡ 2 x \sin^{2}x sin2x tan ⁡ 2 x \tan^{2}x tan2x,可根据 tan ⁡ 2 x = sin ⁡ 2 x cos ⁡ 2 x \tan^{2}x=\frac{\sin^{2}x}{\cos^{2}x} tan2x=cos2xsin2x,再结合 sin ⁡ 2 x + cos ⁡ 2 x = 1 \sin^{2}x+\cos^{2}x = 1 sin2x+cos2x=1来化简。
    • 看角的关系:观察式子中角是否存在和差、倍数等关系。如 sin ⁡ ( 2 x + π 3 ) \sin(2x + \frac{\pi}{3}) sin(2x+3π) sin ⁡ ( 2 x − π 6 ) \sin(2x-\frac{\pi}{6}) sin(2x6π),可发现 ( 2 x + π 3 ) − ( 2 x − π 6 ) = π 2 (2x + \frac{\pi}{3})-(2x-\frac{\pi}{6})=\frac{\pi}{2} (2x+3π)(2x6π)=2π,利用诱导公式化简。
  2. 合理选择公式
    • 化简整式形式:有 sin ⁡ x cos ⁡ x \sin x\cos x sinxcosx形式,考虑用二倍角公式 sin ⁡ 2 x = 2 sin ⁡ x cos ⁡ x \sin2x = 2\sin x\cos x sin2x=2sinxcosx;有 sin ⁡ 2 x \sin^{2}x sin2x cos ⁡ 2 x \cos^{2}x cos2x,用降幂公式。
    • 化简分式形式:分子分母都是三角函数乘积形式,可利用同角三角函数的商数关系或约分化简。如 sin ⁡ x 1 − cos ⁡ x \frac{\sin x}{1 - \cos x} 1cosxsinx,可根据半角公式 tan ⁡ x 2 = 1 − cos ⁡ x sin ⁡ x \tan\frac{x}{2}=\frac{1 - \cos x}{\sin x} tan2x=sinx1cosx的变形来化简。
  3. 整体代换思想:式子中某个部分复杂时,将其看作整体代换。如 f ( x ) = 3 sin ⁡ 2 ( 2 x + π 6 ) − 2 cos ⁡ ( 4 x + π 3 ) + 1 f(x)=3\sin^{2}(2x+\frac{\pi}{6}) - 2\cos(4x+\frac{\pi}{3}) + 1 f(x)=3sin2(2x+6π)2cos(4x+3π)+1,令 t = 2 x + π 6 t = 2x+\frac{\pi}{6} t=2x+6π,先对 sin ⁡ 2 t \sin^{2}t sin2t化简,再将 t = 2 x + π 6 t = 2x+\frac{\pi}{6} t=2x+6π代回继续化简。
  4. 配方法与凑角法
    • 配方法:对于形如 a sin ⁡ 2 x + b sin ⁡ x + c a\sin^{2}x + b\sin x + c asin2x+bsinx+c的式子,可通过配方法转化为含有 sin ⁡ x \sin x sinx的完全平方式等形式化简。例如, 2 sin ⁡ 2 x + 4 sin ⁡ x − 3 = 2 ( sin ⁡ x + 1 ) 2 − 5 2\sin^{2}x + 4\sin x - 3 = 2(\sin x + 1)^{2}-5 2sin2x+4sinx3=2(sinx+1)25
    • 凑角法:根据已知角与所求角的关系凑角使用公式。如已知 sin ⁡ α \sin\alpha sinα cos ⁡ α \cos\alpha cosα,求 sin ⁡ ( α − π 4 ) \sin(\alpha-\frac{\pi}{4}) sin(α4π),可将其凑成 sin ⁡ α cos ⁡ π 4 − cos ⁡ α sin ⁡ π 4 \sin\alpha\cos\frac{\pi}{4}-\cos\alpha\sin\frac{\pi}{4} sinαcos4πcosαsin4π进行计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值