常用公式
-
同角三角函数的基本关系
- 平方关系
- sin 2 α + cos 2 α = 1 \sin^{2}\alpha+\cos^{2}\alpha = 1 sin2α+cos2α=1
- 1 + tan 2 α = sec 2 α 1+\tan^{2}\alpha=\sec^{2}\alpha 1+tan2α=sec2α
- 1 + cot 2 α = csc 2 α 1+\cot^{2}\alpha=\csc^{2}\alpha 1+cot2α=csc2α
- 商数关系
- tan α = sin α cos α \tan\alpha=\frac{\sin\alpha}{\cos\alpha} tanα=cosαsinα
- cot α = cos α sin α \cot\alpha=\frac{\cos\alpha}{\sin\alpha} cotα=sinαcosα
- 平方关系
-
诱导公式
- 口诀:奇变偶不变,符号看象限。即若角度为
π
2
\frac{\pi}{2}
2π的奇数倍,则函数名要变(正弦变余弦、余弦变正弦等);若为偶数倍,则函数名不变。符号根据原函数在变化后的角度所在象限的正负来确定。例如:
- sin ( π 2 + α ) = cos α \sin(\frac{\pi}{2}+\alpha)=\cos\alpha sin(2π+α)=cosα
- sin ( π − α ) = sin α \sin(\pi-\alpha)=\sin\alpha sin(π−α)=sinα
- cos ( π + α ) = − cos α \cos(\pi + \alpha)=-\cos\alpha cos(π+α)=−cosα
- tan ( − α ) = − tan α \tan(-\alpha)=-\tan\alpha tan(−α)=−tanα
- 口诀:奇变偶不变,符号看象限。即若角度为
π
2
\frac{\pi}{2}
2π的奇数倍,则函数名要变(正弦变余弦、余弦变正弦等);若为偶数倍,则函数名不变。符号根据原函数在变化后的角度所在象限的正负来确定。例如:
-
两角和与差的三角函数公式
- sin ( A ± B ) = sin A cos B ± cos A sin B \sin(A\pm B)=\sin A\cos B\pm\cos A\sin B sin(A±B)=sinAcosB±cosAsinB
- cos ( A ± B ) = cos A cos B ∓ sin A sin B \cos(A\pm B)=\cos A\cos B\mp\sin A\sin B cos(A±B)=cosAcosB∓sinAsinB
- tan ( A ± B ) = tan A ± tan B 1 ∓ tan A tan B \tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B} tan(A±B)=1∓tanAtanBtanA±tanB
-
二倍角公式
- sin 2 α = 2 sin α cos α \sin2\alpha = 2\sin\alpha\cos\alpha sin2α=2sinαcosα
- cos 2 α = cos 2 α − sin 2 α = 2 cos 2 α − 1 = 1 − 2 sin 2 α \cos2\alpha=\cos^{2}\alpha-\sin^{2}\alpha = 2\cos^{2}\alpha - 1=1 - 2\sin^{2}\alpha cos2α=cos2α−sin2α=2cos2α−1=1−2sin2α
- tan 2 α = 2 tan α 1 − tan 2 α \tan2\alpha=\frac{2\tan\alpha}{1-\tan^{2}\alpha} tan2α=1−tan2α2tanα
-
降幂公式
- sin 2 α = 1 − cos 2 α 2 \sin^{2}\alpha=\frac{1 - \cos2\alpha}{2} sin2α=21−cos2α
- cos 2 α = 1 + cos 2 α 2 \cos^{2}\alpha=\frac{1 + \cos2\alpha}{2} cos2α=21+cos2α
-
辅助角公式
- a sin α + b cos α = a 2 + b 2 sin ( α + φ ) a\sin\alpha + b\cos\alpha=\sqrt{a^{2}+b^{2}}\sin(\alpha+\varphi) asinα+bcosα=a2+b2sin(α+φ),其中 tan φ = b a \tan\varphi=\frac{b}{a} tanφ=ab。例如, 3 sin x + 4 cos x = 5 sin ( x + φ ) 3\sin x + 4\cos x = 5\sin(x + \varphi) 3sinx+4cosx=5sin(x+φ),其中 tan φ = 4 3 \tan\varphi=\frac{4}{3} tanφ=34
-
半角公式
- 正弦半角公式: sin α 2 = ± 1 − cos α 2 \sin\frac{\alpha}{2}=\pm\sqrt{\frac{1 - \cos\alpha}{2}} sin2α=±21−cosα
- 余弦半角公式: cos α 2 = ± 1 + cos α 2 \cos\frac{\alpha}{2}=\pm\sqrt{\frac{1 + \cos\alpha}{2}} cos2α=±21+cosα
- 正切半角公式: tan α 2 = ± 1 − cos α 1 + cos α = sin α 1 + cos α = 1 − cos α sin α \tan\frac{\alpha}{2}=\pm\sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}}=\frac{\sin\alpha}{1 + \cos\alpha}=\frac{1 - \cos\alpha}{\sin\alpha} tan2α=±1+cosα1−cosα=1+cosαsinα=sinα1−cosα可用于将半角的三角函数与整角的三角函数相互转化,在化简中根据具体情况选择使用。
-
和差化积公式
- sin α + sin β = 2 sin α + β 2 cos α − β 2 \sin\alpha+\sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2α−β
- sin α − sin β = 2 cos α + β 2 sin α − β 2 \sin\alpha-\sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} sinα−sinβ=2cos2α+βsin2α−β
- cos α + cos β = 2 cos α + β 2 cos α − β 2 \cos\alpha+\cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2α−β
- cos α − cos β = − 2 sin α + β 2 sin α − β 2 \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} cosα−cosβ=−2sin2α+βsin2α−β
-
积化和差公式
- sin α cos β = 1 2 [ sin ( α + β ) + sin ( α − β ) ] \sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(α−β)]
- cos α sin β = 1 2 [ sin ( α + β ) − sin ( α − β ) ] \cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)−sin(α−β)]
- cos α cos β = 1 2 [ cos ( α + β ) + cos ( α − β ) ] \cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(α−β)]
- sin α sin β = − 1 2 [ cos ( α + β ) − cos ( α − β ) ] \sin\alpha\sin\beta=-\frac{1}{2}[\cos(\alpha+\beta)-\cos(\alpha-\beta)] sinαsinβ=−21[cos(α+β)−cos(α−β)]
做题技巧
- 观察式子特点
- 看函数名:若式子中三角函数名种类多,可利用同角三角函数关系或诱导公式统一函数名。比如式子中有 sin 2 x \sin^{2}x sin2x和 tan 2 x \tan^{2}x tan2x,可根据 tan 2 x = sin 2 x cos 2 x \tan^{2}x=\frac{\sin^{2}x}{\cos^{2}x} tan2x=cos2xsin2x,再结合 sin 2 x + cos 2 x = 1 \sin^{2}x+\cos^{2}x = 1 sin2x+cos2x=1来化简。
- 看角的关系:观察式子中角是否存在和差、倍数等关系。如 sin ( 2 x + π 3 ) \sin(2x + \frac{\pi}{3}) sin(2x+3π)与 sin ( 2 x − π 6 ) \sin(2x-\frac{\pi}{6}) sin(2x−6π),可发现 ( 2 x + π 3 ) − ( 2 x − π 6 ) = π 2 (2x + \frac{\pi}{3})-(2x-\frac{\pi}{6})=\frac{\pi}{2} (2x+3π)−(2x−6π)=2π,利用诱导公式化简。
- 合理选择公式
- 化简整式形式:有 sin x cos x \sin x\cos x sinxcosx形式,考虑用二倍角公式 sin 2 x = 2 sin x cos x \sin2x = 2\sin x\cos x sin2x=2sinxcosx;有 sin 2 x \sin^{2}x sin2x或 cos 2 x \cos^{2}x cos2x,用降幂公式。
- 化简分式形式:分子分母都是三角函数乘积形式,可利用同角三角函数的商数关系或约分化简。如 sin x 1 − cos x \frac{\sin x}{1 - \cos x} 1−cosxsinx,可根据半角公式 tan x 2 = 1 − cos x sin x \tan\frac{x}{2}=\frac{1 - \cos x}{\sin x} tan2x=sinx1−cosx的变形来化简。
- 整体代换思想:式子中某个部分复杂时,将其看作整体代换。如 f ( x ) = 3 sin 2 ( 2 x + π 6 ) − 2 cos ( 4 x + π 3 ) + 1 f(x)=3\sin^{2}(2x+\frac{\pi}{6}) - 2\cos(4x+\frac{\pi}{3}) + 1 f(x)=3sin2(2x+6π)−2cos(4x+3π)+1,令 t = 2 x + π 6 t = 2x+\frac{\pi}{6} t=2x+6π,先对 sin 2 t \sin^{2}t sin2t化简,再将 t = 2 x + π 6 t = 2x+\frac{\pi}{6} t=2x+6π代回继续化简。
- 配方法与凑角法
- 配方法:对于形如 a sin 2 x + b sin x + c a\sin^{2}x + b\sin x + c asin2x+bsinx+c的式子,可通过配方法转化为含有 sin x \sin x sinx的完全平方式等形式化简。例如, 2 sin 2 x + 4 sin x − 3 = 2 ( sin x + 1 ) 2 − 5 2\sin^{2}x + 4\sin x - 3 = 2(\sin x + 1)^{2}-5 2sin2x+4sinx−3=2(sinx+1)2−5。
- 凑角法:根据已知角与所求角的关系凑角使用公式。如已知 sin α \sin\alpha sinα和 cos α \cos\alpha cosα,求 sin ( α − π 4 ) \sin(\alpha-\frac{\pi}{4}) sin(α−4π),可将其凑成 sin α cos π 4 − cos α sin π 4 \sin\alpha\cos\frac{\pi}{4}-\cos\alpha\sin\frac{\pi}{4} sinαcos4π−cosαsin4π进行计算。