【超详细的贝叶斯滤波原理】(不看后悔)

贝叶斯公式

二维离散型随机变量的贝叶斯公式

对于二维离散型随机变量 ( X , Y ) (X,Y) (X,Y),由其条件概率质量函数与全概率公式,容易得到其贝叶斯公式:
f X ∣ Y ( x ∣ y ) = f X , Y ( x , y ) f Y ( y ) = f Y ∣ X ( y ∣ x ) f X ( x ) ∑ i = 1 ∞ f Y ∣ X ( y ∣ x i ) f X ( x i ) , ( x , y ) ∈ { x i , y j } , i , j = 1 , 2 , 3 , ⋯ f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{\sum_{i=1}^{\infty} f_{Y \mid X}\left(y \mid x_{i}\right) f_{X}\left(x_{i}\right)},(x, y) \in\left\{x_{i}, y_{j}\right\}, i, j=1,2,3, \cdots fXY(xy)=fY(y)fX,Y(x,y)=i=1fYX(yxi)fX(xi)fYX(yx)fX(x),(x,y){xi,yj},i,j=1,2,3,
二维离散型随机变量的贝叶斯公式可通过作图的方式轻松证得。

二维连续型随机变量的贝叶斯公式

结论

对于二维连续型随机变量 ( X , Y ) (X,Y) (X,Y),由其条件概率密度函数与全概率公式,容易得到其贝叶斯公式:
f X ∣ Y ( x ∣ y ) = f X , Y ( x , y ) f Y ( y ) = f Y ∣ X ( y ∣ x ) f X ( x ) ∑ i = 1 ∞ f Y ∣ X ( y ∣ x i ) f X ( x i ) f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{\sum_{i=1}^{\infty} f_{Y \mid X}\left(y \mid x_{i}\right) f_{X}\left(x_{i}\right)} fXY(xy)=fY(y)fX,Y(x,y)=i=1fYX(yxi)fX(xi)fYX(yx)fX(x)

推导

二维连续型随机变量的贝叶斯公式无法通过作图的方式推得,下面进行公式推导,首先计算二维连续型随机变量的条件累积分布函数:
F X ∣ Y ( x ∣ y ) = P ( X ≤ x ∣ Y = y ) = ∑ u = − ∞ x P ( X = u ∣ Y = y ) ⇒  化连续为离散无穷小的累加  = ∑ u = − ∞ x P ( Y = y ∣ X = u ) P ( X = u ) P ( Y = y ) ⇒  二维离散型随机变量的贝  = lim ⁡ ϵ → 0 ∑ u = − ∞ x P ( y ≤ Y ≤ y + ϵ ∣ X = u ) P ( u ≤ X ≤ u + ϵ ) P ( y ≤ Y ≤ y + ϵ ) ⇒  化无穷小为极限形式  = lim ⁡ ϵ → 0 ∑ u = − ∞ x [ F Y ∣ X ( y + ϵ ∣ u ) − F Y ∣ X ( y ∣ u ) ] [ F X ( u + ϵ ) − F X ( u ) ] F Y ( y + ϵ ) − F Y ( y ) ⇒ 分布函数性质 = lim ⁡ ϵ → 0 ∑ u = − ∞ x [ f Y ∣ X ( ξ 1 ∣ u ) ⋅ ϵ ] [ f X ( ξ 2 ) ⋅ ϵ ] f Y ( ξ 3 ) ⋅ ϵ ⇒  拉格朗日中值定理,  ξ 1 , ξ 3 ∈ ( y , y + ϵ ) , ξ 2 ∈ ( u , u + ϵ ) = lim ⁡ ϵ → 0 ∑ u = − ∞ x f Y ∣ X ( y ∣ u ) f X ( u ) f Y ( y ) ⋅ ϵ ⇒ ϵ → 0  时,  ξ 1 → y , ξ 2 → u , ξ 3 → y = ∫ − ∞ x f Y ∣ X ( y ∣ u ) f X ( u ) f Y ( y ) d u ⇒  积分定义  = ∫ − ∞ x f Y ∣ X ( y ∣ x ) f X ( x ) f Y ( y ) d x ⇒  替换自变量符号  u  为  x \begin{aligned} F_{X \mid Y}(x \mid y) &=P(X \leq x \mid Y=y) \\ &=\sum_{u=-\infty}^{x} P(X=u \mid Y=y) \Rightarrow \text { 化连续为离散无穷小的累加 } \\ &=\sum_{u=-\infty}^{x} \frac{P(Y=y \mid X=u) P(X=u)}{P(Y=y)} \Rightarrow \text { 二维离散型随机变量的贝 } \\ &=\lim _{\epsilon \rightarrow 0} \sum_{u=-\infty}^{x} \frac{P(y \leq Y \leq y+\epsilon \mid X=u) P(u \leq X \leq u+\epsilon)}{P(y \leq Y \leq y+\epsilon)} \Rightarrow \text { 化无穷小为极限形式 } \\ &=\lim _{\epsilon \rightarrow 0} \sum_{u=-\infty}^{x} \frac{\left[F_{Y \mid X}(y+\epsilon \mid u)-F_{Y \mid X}(y \mid u)\right]\left[F_{X}(u+\epsilon)-F_{X}(u)\right]}{F_{Y}(y+\epsilon)-F_{Y}(y)} \Rightarrow \text{分布函数性质}\\ &=\lim _{\epsilon \rightarrow 0} \sum_{u=-\infty}^{x} \frac{\left[f_{Y \mid X}\left(\xi_{1} \mid u\right) \cdot \epsilon\right]\left[f_{X}\left(\xi_{2}\right) \cdot \epsilon\right]}{f_{Y}\left(\xi_{3}\right) \cdot \epsilon} \Rightarrow \text { 拉格朗日中值定理, } \xi_{1}, \xi_{3} \in(y, y+\epsilon), \quad \xi_{2} \in(u, u+\epsilon) \\ &=\lim _{\epsilon \rightarrow 0} \sum_{u=-\infty}^{x} \frac{f_{Y \mid X}(y \mid u) f_{X}(u)}{f_{Y}(y)} \cdot \epsilon \quad \Rightarrow \epsilon \rightarrow 0 \text { 时, } \xi_{1} \rightarrow y, \quad \xi_{2} \rightarrow u, \quad \xi_{3} \rightarrow y\\ &=\int_{-\infty}^{x} \frac{f_{Y \mid X}(y \mid u) f_{X}(u)}{f_{Y}(y)} \mathrm{d} u \Rightarrow \text { 积分定义 } \\ &=\int_{-\infty}^{x} \frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \mathrm{d} x \quad \Rightarrow \text { 替换自变量符号 } u \text { 为 } x \end{aligned} FXY(xy)=P(XxY=y)=u=xP(X=uY=y) 化连续为离散无穷小的累加 =u=xP(Y=y)P(Y=yX=u)P(X=u) 二维离散型随机变量的贝 =ϵ0limu=xP(yYy+ϵ)P(yYy+ϵX=u)P(uXu+ϵ) 化无穷小为极限形式 =ϵ0limu=xFY(y+ϵ)FY(y)[FYX(y+ϵu)FYX(yu)][FX(u+ϵ)FX(u)]分布函数性质=ϵ0limu=xfY(ξ3)ϵ[fYX(ξ1u)ϵ][fX(ξ2)ϵ] 拉格朗日中值定理ξ1,ξ3(y,y+ϵ),ξ2(u,u+ϵ)=ϵ0limu=xfY(y)fYX(yu)fX(u)ϵϵ0 ξ1y,ξ2u,ξ3y=xfY(y)fYX(yu)fX(u)du 积分定义 =xfY(y)fYX(yx)fX(x)dx 替换自变量符号 u  x
故,二维连续型随机变量的条件概率密度函数为:
f X ∣ Y ( x ∣ y ) = d F X ∣ Y ( x ∣ y ) d x = f Y ∣ X ( y ∣ x ) f X ( x ) f Y ( y ) f_{X \mid Y}(x \mid y)=\frac{\mathrm{d} F_{X \mid Y}(x \mid y)}{\mathrm{d} x}=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} fXY(xy)=dxdFXY(xy)=fY(y)fYX(yx)fX(x)
代入全概率公式:
f X ∣ Y ( x ∣ y ) = f Y ∣ X ( y ∣ x ) f X ( x ) ∫ − ∞ + ∞ f Y ∣ X ( y ∣ x ) f X ( x ) d x f_{X \mid Y}(x \mid y)=\frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{\int_{-\infty}^{+\infty} f_{Y \mid X}(y \mid x) f_{X}(x) \mathrm{d} x} fXY(xy)=+fYX(yx)fX(x)dxfYX(yx)fX(x)
上式即为二维连续型随机变量的贝叶斯公式。

先验概率、似然概率与后验概率

在二维连续型随机变量的贝叶斯公式中,有如下定义:

  • f X ( x ) f_{X}(x) fX(x) 被称为先验概率密度(Prior Probability Density),表示根据以往的经验和分析,在本次试验或采样前便可获得的随机变量 X X X 的概率密度;
  • f Y ∣ X ( y ∣ x ) f_{Y|X}(y|x) fYX(yx) 被称为似然概率密度(Likelihood Probability Density),表示在状态随机变量 X X X 取值为 x x x 的条件下,观测随机变量 Y Y Y 取值为 y y y 的概率密度,状态为因,观测为果,即由因推果;
  • f X ∣ Y ( x ∣ y ) f_{X|Y}(x|y) fXY(xy) 被成为后验概率密度(Posterior Probability Density),表示在观测随机变量 Y Y Y 取值为 y y y 的条件下,状态随机变量 X X X 取值为 x x x 的概率密度,状态为因,观测为果,即由果推因。
    此外,当 y y y 为定值时, η = [ ∫ − ∞ + ∞ f Y ∣ X ( y ∣ x ) f X ( x ) d x ] − 1 \eta=\left[\int_{-\infty}^{+\infty} f_{Y \mid X}(y \mid x) f_{X}(x) \mathrm{d} x\right]^{-1} η=[+fYX(yx)fX(x)dx]1 为一常数,常被称为贝叶斯公式的归一化常数。
    因此,二维连续型随机变量的贝叶斯公式可表示为:
    后 验 概 率 密 度 = η × 似 然 概 率 密 度 × 先 验 概 率 密 度 后验概率密度=\eta×似然概率密度×先验概率密度 =η××

再谈似然概率

上文中提到,似然概率密度函数 f Y ∣ X ( y ∣ x ) f_{Y|X}(y|x) fYX(yx)表示在状态随机变量 X X X 取值为 x x x 的条件下,观测随机变量 Y Y Y 取值为 y y y 的概率密度。似然概率密度函数表征了传感器检测精度,对于给定的状态条件 X = x X=x X=x,观测结果 Y = y Y=y Y=y 的概率分布通常有三种模型:

  1. 等可能型
    观测值在状态量真值附近呈均匀分布,此时的似然概率密度函数为常数。
  2. 阶梯型
    观测值在状态量真值附近呈阶梯分布,此时的似然概率密度函数为分段常数。
  3. 正态分布型
    观测值在状态量真值附近呈高斯分布,此时的似然概率密度函数为高斯函数:
    f Y ∣ X ( y ∣ x ) = 1 σ 2 π e − ( y − x ) 2 2 σ 2 f_{Y \mid X}(y \mid x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(y-x)^{2}}{2 \sigma^{2}}} fYX(yx)=σ2π 1e2σ2(yx)2
    若假定似然概率密度函数为高斯函数,此时,似然概率密度函数的均值 x x x 代表状态量真值, σ \sigma σ 代表传感器检测精度范围。若同时假定先验概率密度函数为高斯函数,即:
    f X ( x ) ∼ N ( μ 1 , σ 1 2 ) , f Y ∣ X ( y ∣ x ) ∼ N ( μ 2 , σ 2 2 ) f_{X}(x) \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \quad f_{Y \mid X}(y \mid x) \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right) fX(x)N(μ1,σ12),fYX(yx)N(μ2,σ22)

    f X ∣ Y ( x ∣ y ) ∼ N ( σ 2 2 σ 1 2 + σ 2 2 μ 1 + σ 1 2 σ 1 2 + σ 2 2 μ 2 , σ 1 2 σ 2 2 σ 1 2 + σ 2 2 ) f_{X \mid Y}(x \mid y) \sim \mathcal{N}\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \mu_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \mu_{2}, \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right) fXY(xy)N(σ12+σ22σ22μ1+σ12+σ22σ12μ2,σ12+σ22σ12σ22)
    由于
    σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = σ 1 2 1 + σ 1 2 σ 2 2 < σ 1 2 \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}=\frac{\sigma_{1}^{2}}{1+\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}}<\sigma_{1}^{2} σ12+σ22σ12σ22=1+σ22σ12σ12<σ12

    σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = σ 2 2 1 + σ 2 2 σ 1 2 < σ 2 2 \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}=\frac{\sigma_{2}^{2}}{1+\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}}<\sigma_{2}^{2} σ12+σ22σ12σ22=1+σ12σ22σ22<σ22
    故,后验概率密度函数方差既小于先验概率密度函数方差,也小于似然概率密度函数方差,系统不确定度降低
    σ 1 2 ≫ σ 2 2 \sigma_{1}^{2} \gg \sigma_{2}^{2} σ12σ22 ,则近似有:
    f X ∣ Y ( x ∣ y ) ∼ N ( μ 2 , σ 2 2 ) f_{X \mid Y}(x \mid y) \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right) fXY(xy)N(μ2,σ22)
    此时,后验倾向于观测。
    σ 1 2 ≪ σ 2 2 \sigma_{1}^{2} \ll \sigma_{2}^{2} σ12σ22,则近似有:
    f X ∣ Y ( x ∣ y ) ∼ N ( μ 1 , σ 1 2 ) f_{X \mid Y}(x \mid y) \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right) fXY(xy)N(μ1,σ12)
    此时,后验倾向于先验。

贝叶斯滤波推导

问题建模

  1. 问题描述
    对于某状态量随机变量 X X X,从初始时刻 0 0 0 开始,对其进行观测,得到 0 − k 0 - k 0k 时刻的观测值:
    y 0 , y 1 , y 2 , ⋯   , y k y_0, y_1, y_2, \cdots, y_k y0,y1,y2,,yk
    求解 k k k 时刻状态量随机变量 X k X_{k} Xk 的最优估计 x ^ k \hat{x}_{k} x^k
  2. 求解思路
    以贝叶斯公式为求解方向,将问题转化为求解状态量随机变量 X k X_{k} Xk 后验概率密度函数的期望:
    x ^ k = E [ f X k + ( x ) ] \hat{x}_k=E\left[f_{X_k}^{+}(x)\right] x^k=E[fXk+(x)]
    进而需要求解状态量随机变量 X k X_{k} Xk 的先验概率密度函数与似然概率密度函数。我们认为, k k k 时刻的状态量随机变量 X k X_{k} Xk 与且仅与上一时刻的状态量随机变量 X k − 1 X_{k-1} Xk1 有关, k k k 时刻的观测量随机变量 Y k Y_{k} Yk 与且仅与 k k k 时刻的状态量随机变量 X k X_{k} Xk 有关,其中的数量关系我们分别称之为状态方程观测方程
    { X k = f ( X k − 1 ) + Q k ⇒  状态方程  Y k = h ( X k ) + R k ⇒  观测方程  \left\{\begin{array}{l}X_k =f\left(X_{k-1}\right)+Q_k \quad \Rightarrow \text { 状态方程 } \\ Y_k = h\left(X_k\right)+R_k \quad \Rightarrow \text { 观测方程 }\end{array}\right. {Xk=f(Xk1)+Qk 状态方程 Yk=h(Xk)+Rk 观测方程 
    f ( x ) f(x) f(x) 被称为状态转移函数, h ( x ) h(x) h(x) 被称为观测函数。
    对于 0 时刻的初始状态量随机变量 X 0 X_0 X0,认为观测值 y 0 y_0 y0 即为其真值,其后验概率密度函数即为其先验概率密度函数。我们可以根据经验知识(建模精度和传感器精度)写出 0 时刻的初始状态量随机变量 X 0 X_0 X0 的后验概率密度函数 f X 0 + ( x ) f^+_{X_0}(x) fX0+(x) k k k 时刻过程噪声随机变量 Q k Q_k Qk 的概率密度函数 f Q k ( x ) f_{Q_k}(x) fQk(x) k k k 时刻观测噪声随机变量 R k R_k Rk 的概率密度函数 f R k ( x ) f_{R_k}(x) fRk(x)
  3. 符号定义
  • 各时刻的状态量随机变量
    X 0 , X 1 , X 2 , ⋯   , X k X_0, X_1, X_2, \cdots, X_k X0,X1,X2,,Xk
  • 各时刻的观测量随机变量
    Y 0 , Y 1 , Y 2 , ⋯   , Y k Y_0, Y_1, Y_2, \cdots, Y_k Y0,Y1,Y2,,Yk
  • 各时刻的观测值
    y 0 , y 1 , y 2 , ⋯   , y k y_0, y_1, y_2, \cdots, y_k y0,y1,y2,,yk
  • 各时刻的过程噪声随机变量
    Q 1 , Q 2 , ⋯   , Q k Q_1, Q_2, \cdots, Q_k Q1,Q2,,Qk
  • 各时刻的观测噪声随机变量
    R 1 , R 2 , ⋯   , R k R_1, R_2, \cdots, R_k R1,R2,,Rk
  • 各时刻的过程噪声随机变量概率密度函数
    f Q 1 ( x ) , f Q 2 ( x ) , ⋯   , f Q k ( x ) f_{Q_1}(x), f_{Q_2}(x), \cdots, f_{Q_k}(x) fQ1(x),fQ2(x),,fQk(x)
  • 各时刻的观测噪声随机变量概率密度函数
    f R 1 ( x ) , f R 2 ( x ) , ⋯   , f R k ( x ) f_{R_1}(x), f_{R_2}(x), \cdots, f_{R_k}(x) fR1(x),fR2(x),,fRk(x)
  • 各时刻的状态量随机变量先验概率密度函数
    f X 0 − ( x ) , f X 1 − ( x ) , f X 2 − ( x ) , ⋯   , f X k − ( x ) f_{X_0}^{-}(x), f_{X_1}^{-}(x), f_{X_2}^{-}(x), \cdots, f_{X_k}^{-}(x) fX0(x),fX1(x),fX2(x),,fXk(x)
  • 各时刻的状态量随机变量后验概率密度函数
    f X 0 − ( x ) , f X 1 + ( x ) , f X 2 + ( x ) , ⋯   , f X k + ( x ) f_{X_0}^{-}(x), f_{X_1}^{+}(x), f_{X_2}^{+}(x), \cdots, f_{X_k}^{+}(x) fX0(x),fX1+(x),fX2+(x),,fXk+(x)
  • 各时刻状态量随机变量与观测量随机变量的似然概率密度函数
    f X 0 − ( x ) , f X 1 + ( x ) , f X 2 + ( x ) , ⋯   , f X k + ( x ) f_{X_0}^{-}(x), f_{X_1}^{+}(x), f_{X_2}^{+}(x), \cdots, f_{X_k}^{+}(x) fX0(x),fX1+(x),fX2+(x),,fXk+(x)
  1. 重要假设
  • X 0 X_0 X0 分别与 Q 1 , Q 2 , ⋯   , Q k Q_1, Q_2, \cdots, Q_k Q1,Q2,,Qk 相互独立;
  • X 0 X_0 X0 分别与 R 1 , R 2 , ⋯   , R k R_1, R_2, \cdots, R_k R1,R2,,Rk 相互独立;
  • X k − 1 X_{k-1} Xk1 Q k Q_k Qk 相互独立;
  • X k X_{k} Xk R k R_k Rk 相互独立。
  1. 重要定理
    条件概率里的条件可以作逻辑推导。例如:
    P ( X = 1 ∣ Y = 2 , Z = 3 ) = P ( X + Y = 3 ∣ Y = 2 , Z = 3 ) = P ( X + Y = 3 ∣ Y = 2 , Z − Y = 1 ) P(X=1 \mid Y=2, Z=3)=P(X+Y=3 \mid Y=2, Z=3)=P(X+Y=3 \mid Y=2, Z-Y=1) P(X=1Y=2,Z=3)=P(X+Y=3Y=2,Z=3)=P(X+Y=3Y=2,ZY=1)

预测步推导

已知 0 时刻状态量随机变量 X 0 X_0 X0 的后验概率密度函数 f X 0 + ( x ) f^+_{X_0}(x) fX0+(x),状态转移函数 f ( x ) f(x) f(x),1 时刻过程噪声随机变量 Q 1 Q_1 Q1 的概率密度函数 f Q 1 ( x ) f_{Q_1}(x) fQ1(x),求解 1 时刻状态量随机变量 X1 的先验概率密度函数 f X 1 − ( x ) f^-_{X_1}(x) fX1(x)
类似二维连续型随机变量贝叶斯公式的推导过程,我们从求解 X1 的先验累积分布函数 F X 1 − F^−_{X_1} FX1 入手。

= ∑ u = − ∞ x ∑ v = − ∞ + ∞ P ( X 1 = u ∣ X 0 = v ) P ( X 0 = v ) =\sum_{u=-\infty}^x \sum_{v=-\infty}^{+\infty} P\left(X_1=u \mid X_0=v\right) P\left(X_0=v\right) =u=xv=+P(X1=uX0=v)P(X0=v)


故,1 时刻状态量随机变量 X 1 X_1 X1 的先验概率密度函数为:
f X 1 − ( x ) = d F X 1 − ( x ) d x = ∫ − ∞ + ∞ f Q 1 [ x − f ( v ) ] f X 0 − ( v ) d v f_{X_1}^{-}(x)=\frac{\mathrm{d} F_{X_1}^{-}(x)}{\mathrm{d} x}=\int_{-\infty}^{+\infty} f_{Q_1}[x-f(v)] f_{X_0}^{-}(v) \mathrm{d} v fX1(x)=dxdFX1(x)=+fQ1[xf(v)]fX0(v)dv
推导完毕。可以发现,先验概率密度函数本质来源于状态方程

更新步推导

已知 1 时刻观测量随机变量 Y 1 Y_1 Y1 的取值 y 1 y_1 y1,求解 1 时刻状态量随机变量与观测量随机变量的似然概率密度函数 f Y 1 ∣ X 1 ( y 1 ∣ x ) f_{Y_1|X_1}(y_1 | x) fY1X1(y1x),并联合预测步得到的 1 时刻状态量随机变量 X 1 X_1 X1 的先验概率密度函数 f X 1 − ( x ) f^−_{X_1}(x) fX1(x),求解 1 时刻状态量随机变量 X 1 X_1 X1 的后验概率密度函数 f X 1 + ( x ) f^+_{X_1}(x) fX1+(x)
首先,求解似然概率密度函数 f Y 1 ∣ X 1 ( y 1 ∣ x ) f_{Y_1|X_1}(y_1 | x) fY1X1(y1x)
KaTeX parse error: Expected 'EOF', got '&' at position 41: … \mid x\right) &̲=\lim _{\epsilo…


可以发现,似然概率密度函数本质来源于观测方程
然后,联合预测步得到的 1 时刻状态量随机变量 X 1 X_1 X1 的先验概率密度函数 f X 1 − ( x ) f^−_{X_1}(x) fX1(x),求解 1 时刻状态量随机变量 X 1 X_1 X1 的后验概率密度函数 f X 1 + ( x ) f^+_{X_1}(x) fX1+(x)
f X 1 − ( x ) = η 1 ⋅ f Y 1 ∣ X 1 ( y 1 ∣ x ) ⋅ f X 1 − ( x ) = η 1 ⋅ f R 1 [ y 1 − h ( x ) ] ⋅ f X 1 − ( x ) f_{X_1}^{-}(x)=\eta_1 \cdot f_{Y_1 \mid X_1}\left(y_1 \mid x\right) \cdot f_{X_1}^{-}(x)=\eta_1 \cdot f_{R_1}\left[y_1-h(x)\right] \cdot f_{X_1}^{-}(x) fX1(x)=η1fY1X1(y1x)fX1(x)=η1fR1[y1h(x)]fX1(x)
其中,归一化常数 η 1 \eta_1 η1为:
η 1 = [ ∫ − ∞ + ∞ f Y 1 ∣ X 1 ( y 1 ∣ x ) f X 1 − ( x ) d x ] − 1 = { ∫ − ∞ + ∞ f R 1 [ y 1 − h ( x ) ] f X 1 − ( x ) d x } − 1 \eta_1=\left[\int_{-\infty}^{+\infty} f_{Y_1 \mid X_1}\left(y_1 \mid x\right) f_{X_1}^{-}(x) \mathrm{d} x\right]^{-1}=\left\{\int_{-\infty}^{+\infty} f_{R_1}\left[y_1-h(x)\right] f_{X_1}^{-}(x) \mathrm{d} x\right\}^{-1} η1=[+fY1X1(y1x)fX1(x)dx]1={+fR1[y1h(x)]fX1(x)dx}1

递推流程

由预测步和更新步的推导结果,可得到由 0 时刻状态量随机变量 X 0 X_0 X0 的后验概率密度函数 f X 0 + ( x ) f^+_{X_0}(x) fX0+(x) k k k 时刻状态量随机变量 X k X_k Xk 的后验概率密度函数 f X k + ( x ) f^+_{X_k}(x) fXk+(x) 的递推流程:
f X 0 − ( x ) ⟹ 预 测 f X 1 − ( x ) = ∫ − ∞ − ∞ f Q 1 [ x − f ( v ) ] f X 0 + ( v ) d v ⟹ 观 测 更 新 f X 1 + ( x ) = η 1 ⋅ f R 1 [ y 1 − h ( x ) ] ⋅ f X 1 − ( x ) ⟹ 预 测 f X 2 − ( x ) = ∫ − ∞ − ∞ f Q 2 [ x − f ( v ) ] f X 1 + ( v ) d v ⟹ 观 测 更 新 f X 2 + ( x ) = η 2 ⋅ f R 2 [ y 2 − h ( x ) ] ⋅ f X 2 − ( x ) ⋯ ⟹ 预 测 f X k − ( x ) = ∫ − ∞ − ∞ f Q k [ x − f ( v ) ] f X k − 1 + ( v ) d v ⟹ 观 测 更 新 f X k + ( x ) = η k ⋅ f R k [ y k − h ( x ) ] ⋅ f X k − ( x ) f_{X_0}^{-}(x) \stackrel{预测}{\Longrightarrow} f_{X_1}^{-}(x)=\int_{-\infty}^{-\infty} f_{Q_1}[x-f(v)] f_{X_0}^{+}(v) \mathrm{d} v \stackrel{观测更新}{\Longrightarrow} f_{X_1}^{+}(x)=\eta_1 \cdot f_{R_1}\left[y_1-h(x)\right]\cdot f_{X_1}^{-}(x)\\ \stackrel{预测}{\Longrightarrow} f_{X_2}^{-}(x)=\int_{-\infty}^{-\infty} f_{Q_2}[x-f(v)] f_{X_1}^{+}(v) \mathrm{d} v \stackrel{观测更新}{\Longrightarrow} f_{X_2}^{+}(x)=\eta_2 \cdot f_{R_2}\left[y_2-h(x)\right] \cdot f_{X_2}^{-}(x) \\ \cdots \\ \stackrel{预测}{\Longrightarrow} f_{X_k}^{-}(x)=\int_{-\infty}^{-\infty} f_{Q_k}[x-f(v)] f_{X_{k-1}}^{+}(v) \mathrm{d} v \stackrel{观测更新}{\Longrightarrow}f_{X_k}^{+}(x)=\eta_k \cdot f_{R_k}\left[y_k-h(x)\right] \cdot f_{X_k}^{-}(x) fX0(x)fX1(x)=fQ1[xf(v)]fX0+(v)dvfX1+(x)=η1fR1[y1h(x)]fX1(x)fX2(x)=fQ2[xf(v)]fX1+(v)dvfX2+(x)=η2fR2[y2h(x)]fX2(x)fXk(x)=fQk[xf(v)]fXk1+(v)dvfXk+(x)=ηkfRk[ykh(x)]fXk(x)

其中,归一化常数 η k \eta_k ηk 为:
η k = { ∫ − ∞ + ∞ f R k [ y k − h ( x ) ] f X k − ( x ) d x } − 1 \eta_k=\left\{\int_{-\infty}^{+\infty} f_{R_k}\left[y_k-h(x)\right] f_{X_k}^{-}(x) \mathrm{d} x\right\}^{-1} ηk={+fRk[ykh(x)]fXk(x)dx}1
最终,可得到 k k k 时刻状态量随机变量 X k X_k Xk 的最优估计 x ^ k \hat{x}_k x^k
x ^ k = E [ f X k + ( x ) ] = ∫ − ∞ − ∞ x f X k − ( x ) d x \hat{x}_k=E\left[f_{X_k}^{+}(x)\right]=\int_{-\infty}^{-\infty} x f_{X_k}^{-}(x) \mathrm{d} x x^k=E[fXk+(x)]=xfXk(x)dx

完整算法框架

  1. 设初值
    初始 0 时刻状态量随机变量 X 0 X_0 X0 的后验概率密度函数:
    f X 0 + ( x ) f_{X_0}^+(x) fX0+(x)
  2. 预测步
    k k k 时刻状态量随机变量 X k X_k Xk 的先验概率密度函数:
    f X k − ( x ) = ∫ − ∞ + ∞ f Q k k [ x − f ( v ) ] f X k − 1 + ( v ) d v f_{X_k}^{-}(x)=\int_{-\infty}^{+\infty} f_{Q_k k}[x-f(v)] f_{X_{k-1}}^{+}(v) \mathrm{d} v fXk(x)=+fQkk[xf(v)]fXk1+(v)dv
  3. 更新步
    k k k 时刻状态量随机变量 X k X_k Xk 的后验概率密度函数:
    f X k + ( x ) = η k ⋅ f R k [ y k − h ( x ) ] ⋅ f X k − ( x ) f_{X_k}^{+}(x)=\eta_k \cdot f_{R_k}\left[y_k-h(x)\right] \cdot f_{X_k}^{-}(x) fXk+(x)=ηkfRk[ykh(x)]fXk(x)
    归一化常数 η k \eta_k ηk
    η k = { ∫ − ∞ + ∞ f R k [ y k − h ( x ) ] f X k − ( x ) d x } − 1 \eta_k=\left\{\int_{-\infty}^{+\infty} f_{R_k}\left[y_k-h(x)\right] f_{X_k}^{-}(x) \mathrm{d} x\right\}^{-1} ηk={+fRk[ykh(x)]fXk(x)dx}1
  4. 求解状态量后验估计
    k k k 时刻状态量随机变量 X k X_k Xk 的后验估计:
    x ^ k − = E [ f X k + ( x ) ] = ∫ − ∞ − ∞ x f X k − ( x ) d x \hat{x}_k^{-}=E\left[f_{X_k}^{+}(x)\right]=\int_{-\infty}^{-\infty} x f_{X_k}^{-}(x) \mathrm{d} x x^k=E[fXk+(x)]=xfXk(x)dx

贝叶斯滤波的缺点及解决方法

缺点

从上文的推导及结论中可以发现,求解预测步中的先验概率密度函数 f X k − ( x ) f_{X_k}^-(x) fXk(x)、更新步中的归一化常数 η k \eta_k ηk、最终的最优估计 x ^ k \hat{x}^k x^k 时均涉及到无穷积分,而大多数情况无法得到解析解,使得贝叶斯滤波算法的直接应用十分困难。

解决办法

为了解决贝叶斯滤波中的无穷积分问题,通常从两个角度出发:

  1. 作理想假设
  • 假设状态转移函数 f ( x ) f(x) f(x) 和观测函数 h ( x ) h(x) h(x) 均为线性函数,过程噪声随机变量 Q k Q_k Qk 和 观测噪声随机变量 R k R_k Rk 均服从均值为 0 的正态分布——卡尔曼滤波(Kalman Filter)
  • 假设状态转移函数 f ( x ) f(x) f(x) 和(或)观测函数 h ( x ) h(x) h(x) 为非线性函数,过程噪声随机变量 Q k Q_k Qk 和 观测噪声随机变量 R k R_k Rk 均服从均值为 0 的正态分布——扩展卡尔曼滤波(Extended Kalman Filter)和无迹卡尔曼滤波(Unscented Kalman Filter)
  1. 化连续为离散
    将无穷积分转化为数值积分,一般有以下方法:
  • 高斯积分(不常用)
  • 蒙特卡罗积分(粒子滤波,Particle Filter)
  • 直方图滤波
  • 9
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值