1.cuda的安装
(1)查看自己显卡适合的版本
(2)查看教程,教程说要下载对应版本的CUDA,但是登入CUDA Toolkit Archive | NVIDIA Developer发现最高的CUDA也只是12.6,而上面组件信息提示要下载12.7版本的CUDA,我感觉这应该是当前显卡最高能下到的版本,于是折中下载12.5版本的CUDA
(3)下载后是个exe文件,双击即可运行,一步步来即可。需要注意的地方是当选择要安装到的文件夹位置时最好选择默认的即可,在安装过程中,我更改了默认安装路径,在安装过程中,出现了闪退重启的现象,选择默认安装路径之后,安装成功。
2.pip 安装pytorch
(1)使用Anaconda创建虚拟环境并激活,需要注意的是要查看cuda版本需要的python版本,要不然python版本不对的话,还需要删除重新下载。pytorch官网(PyTorch)
这里要求python版本为3.9以后,这里下载3.10
(2)使用pip命令安装pytorch,进入到官网上,选择对应的版本,下方即可出现pip安装命令
(3)复制命令,在已经激活的环境中,粘贴命令,执行安装语句。
(4)输入 torch.cuda.is_available()
检查pytorch的GPU能否用,如果显示True,就说明这个PyTorch安装成功了
3.Pycharm配置
这里着重记录一下,之前遇到了很多次的问题:我想要在新项目中,导入新创建的虚拟环境作为python解释器,我直接选择了添加本地解释器,然后选择conda环境,在虚拟环境下的文件夹里面去找python.exe文件,但是无论去哪儿个文件夹找,都找不到对应的exe文件。
正确的做法:应该基于当前conda,先找到Anaconda的安装路径,找到Scripts/conda.exe,创建环境,然后才能选择虚拟环境下的解释器。
在下拉框中,选择已经创建好的虚拟环境名称,点击创建即可。
这部分参考:超详细的pycharm+anaconda搭建python虚拟环境_pycharm anaconda环境搭建-CSDN博客