CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装

确定显卡支持的CUDA版本

在显卡驱动被正确安装的前提下,在命令行里输入

nvidia-smi.exe

效果如图所示
在这里插入图片描述

可以看到显示CUDA Version为12.7,说明该显卡最高支持到12.7,我这里就选择12.6的版本,你也可以选择更低的版本比如 12.5,12.4更低的版本

确定CUDA版本对应的cuDNN版本

在cudnn下载页面,我们cuda是12.6,这里就选择cuDNNV8.9.0版本的for CUDA11.x版本即可
在这里插入图片描述

好了三个安装版本都确定好了,现在开始一个个安装就行

安装CUDA

下载安装包,在NVIDIA官方网站即可下载,地址为:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述

注意选择你的操作系统,什么版本的 我是Windows11 需要选择11,离线安装包还是在线安装包,省得麻烦就选择离线安装包了,选择好后,点击下面的Download按钮。
安装包下载好后,双击安装包进行安装
pic_ba57e34d.png
弹出这个,临时抽取文件放置位置的,直接点击ok、随后进入系统兼容性的检查,就是看你是否下错安装包了
在这里插入图片描述

没问题后会弹出许可协议
pic_09db9d37.png
直接点击同意并继续,弹出的安装选项,选择自定义
在这里插入图片描述

点击下一步
在这里插入图片描述

把CUDA选一下,还需要注意一点,如果 你前面没有安装vs,直接安装的这个,需要把CUDA里面的
Visual Studio Integration取消勾选,否则会安装不成功
在这里插入图片描述

需要记住安装的位置,后面需要用到
pic_26d39cf6.png
下一步,开始安装
在这里插入图片描述

点击下一步
在这里插入图片描述

这里提示了你选择的组件的安装情况,到这就安装好了,点击关闭。

检查是否安装成功

打开cmd,输入

nvcc -V

在这里插入图片描述

出现了你安装的CUDA的版本信息,说明安装成功了

安装cuDNN

下载安装包,在NVIDIA官方网站即可下载,地址为:
https://developer.nvidia.com/rdp/cudnn-archive
如没有NVIDIA开发者账号的话,就按照提示注册一个就好,再登录即可下载了。
下载下来是个压缩包,我的是cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip 直接解压缩,完成后点击去你能看到如下三个文件夹(bin、include、lib)
pic_34b9a072.png
把这三个文件夹的文件分别拷贝到CUDA安装目录对应的(bin、include、lib)文件夹中即可。CUDA的lib目录有x64 、Win32、cmake三个文件夹,拷到其中的x64这个文件夹中
pic_2fa9689e.png
然后进入该目录下的 extras/demo_suite/ 目录,在终端中依次输入以下命令:

./bandwidthTest
./deviceQuery

在这里插入图片描述
在这里插入图片描述

若均输出 Result = PASS,说明安装成功:

安装 PyTorch

然后,进入 PyTorch 官网,通过“Get Started -> Start Locally”定位到下载页:

https://pytorch.org/

在这里插入图片描述
在这里根据你使用的 Python 环境选择合适的安装方式,网页上会自动生成合适的安装命令。例如我使用 pip 管理我的 Python 环境,安装了 CUDA 12.x,就选择相应的选项。如果你使用 Anaconda 管理你的 Python 环境,你需要选择“Conda”选项。此处我使用以下代码安装:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
### 安装 CUDAcuDNN指南 #### 确定支持的 CUDA 版本 为了确保安装顺利,需确认计算机中的 NVIDIA 显卡所能支持的最大 CUDA 版本。这一步骤至关重要,因为不同型号的显卡可能仅兼容特定范围内的 CUDA 版本。通过命令提示符运行 `nvidia-smi.exe` 可获取当前硬件信息以及其对应的驱动程序版本号[^3]。 #### 下载与安装 CUDA 工具包 访问[NVIDIA官方网站](https://developer.nvidia.com/cuda-downloads),依据操作系统类型选择合适的下载链接。页面会自动检测用户的系统配置并推荐最佳选项;也可以手动指定所需的具体版本。完成下载后按照向导指示逐步操作直至结束。值得注意的是,在此过程中可能会被询问是否要安装额外组件(例如 Visual Studio 集成),可根据个人需求决定接受与否。 #### 设置环境变量 成功安装之后,应当正确设置系统的 PATH 环境变量以便于后续调用编译器及其他工具。对于 Windows 用户而言,典型路径应类似于: ```plaintext C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1 ``` 上述目录下的 bin 文件夹应该加入到全局 PATH 中去[^1]。此外,还需考虑将 include 和 lib 路径添加至其他相关联的环境变量里,比如 INCLUDE 和 LIBRARY_PATH。 #### 获取并部署 cuDNN 库文件 前往[NVIDIA cuDNN 页面](https://developer.nvidia.com/rdp/cudnn-archive)注册账号登录后即可获得各个版本的 cuDNN 下载权限。挑选匹配已安装 CUDA 版本的那一项,并遵循官方文档说明解压释放相应资源到适当位置——通常情况下就是刚才提到的那个 CUDA TOOLKIT HOME 目录下。 #### 测试验证安装成果 最后但同样重要的一环是对整个过程做一次全面检验。可以编写一段简单的测试代码来检查一切是否正常工作。下面给出了一段 Python 代码片段作为例子,它依赖于 PyTorch 框架来进行基本张量运算,并打印出设备名称以证明 GPU 加速功能已被激活。 ```python import torch if __name__ == "__main__": device = "cuda" if torch.cuda.is_available() else "cpu" tensor = torch.zeros((2, 2), device=device) print(f"Using {device} device.") print(tensor) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法小狂人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值