CUDA详细安装及环境配置——环境配置指南 – CUDA+cuDNN+PyTorch 安装

确定显卡支持的CUDA版本

在显卡驱动被正确安装的前提下,在命令行里输入

nvidia-smi.exe

效果如图所示
在这里插入图片描述

可以看到显示CUDA Version为12.7,说明该显卡最高支持到12.7,我这里就选择12.6的版本,你也可以选择更低的版本比如 12.5,12.4更低的版本

确定CUDA版本对应的cuDNN版本

在cudnn下载页面,我们cuda是12.6,这里就选择cuDNNV8.9.0版本的for CUDA11.x版本即可
在这里插入图片描述

好了三个安装版本都确定好了,现在开始一个个安装就行

安装CUDA

下载安装包,在NVIDIA官方网站即可下载,地址为:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述

注意选择你的操作系统,什么版本的 我是Windows11 需要选择11,离线安装包还是在线安装包,省得麻烦就选择离线安装包了,选择好后,点击下面的Download按钮。
安装包下载好后,双击安装包进行安装
pic_ba57e34d.png
弹出这个,临时抽取文件放置位置的,直接点击ok、随后进入系统兼容性的检查,就是看你是否下错安装包了
在这里插入图片描述

没问题后会弹出许可协议
pic_09db9d37.png
直接点击同意并继续,弹出的安装选项,选择自定义
在这里插入图片描述

点击下一步
在这里插入图片描述

把CUDA选一下,还需要注意一点,如果 你前面没有安装vs,直接安装的这个,需要把CUDA里面的
Visual Studio Integration取消勾选,否则会安装不成功
在这里插入图片描述

需要记住安装的位置,后面需要用到
pic_26d39cf6.png
下一步,开始安装
在这里插入图片描述

点击下一步
在这里插入图片描述

这里提示了你选择的组件的安装情况,到这就安装好了,点击关闭。

检查是否安装成功

打开cmd,输入

nvcc -V

在这里插入图片描述

出现了你安装的CUDA的版本信息,说明安装成功了

安装cuDNN

下载安装包,在NVIDIA官方网站即可下载,地址为:
https://developer.nvidia.com/rdp/cudnn-archive
如没有NVIDIA开发者账号的话,就按照提示注册一个就好,再登录即可下载了。
下载下来是个压缩包,我的是cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip 直接解压缩,完成后点击去你能看到如下三个文件夹(bin、include、lib)
pic_34b9a072.png
把这三个文件夹的文件分别拷贝到CUDA安装目录对应的(bin、include、lib)文件夹中即可。CUDA的lib目录有x64 、Win32、cmake三个文件夹,拷到其中的x64这个文件夹中
pic_2fa9689e.png
然后进入该目录下的 extras/demo_suite/ 目录,在终端中依次输入以下命令:

./bandwidthTest
./deviceQuery

在这里插入图片描述
在这里插入图片描述

若均输出 Result = PASS,说明安装成功:

安装 PyTorch

然后,进入 PyTorch 官网,通过“Get Started -> Start Locally”定位到下载页:

https://pytorch.org/

在这里插入图片描述
在这里根据你使用的 Python 环境选择合适的安装方式,网页上会自动生成合适的安装命令。例如我使用 pip 管理我的 Python 环境,安装了 CUDA 12.x,就选择相应的选项。如果你使用 Anaconda 管理你的 Python 环境,你需要选择“Conda”选项。此处我使用以下代码安装:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
### CUDA 12.6 安装指南 #### 准备工作 为了确保安装过程顺利,建议先确认操作系统兼容性和硬件需求。访问英伟达官方网站获取最新的CUDA 12.6版本以及对应的cuDNN库[^2]。 #### 更新系统包管理器 保持系统的最新状态对于成功安装至关重要。执行以下命令来更新软件源并升级现有包: ```bash sudo apt-get update && sudo apt-get upgrade -y ``` #### 下载CUDA 12.6 前往[NVIDIA官方下载页面](https://developer.nvidia.com/cuda-downloads),选择适合的操作系统、架构和其他参数后点击“Download”。这将引导至具体的安装文件链接。 #### 执行安装脚本 下载完成后,通过终端导航到保存位置,并赋予该文件可执行权限,之后运行它来进行安装操作: ```bash chmod +x cuda_12.6.*.run sudo ./cuda_12.6.*.run ``` 注意:在启动安装向导前,请仔细阅读屏幕上的提示信息,按照个人偏好设置选项(如是否安装NSight工具集等附加组件)[^3]。 #### 设置环境变量 为了让编译器能够识别新安装CUDA路径,需编辑`~/.bashrc`或其他shell配置文件,添加如下两行内容以便永久生效: ```bash export PATH=/usr/local/cuda-12.6/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-12.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 接着使更改立即生效: ```bash source ~/.bashrc ``` 验证安装成果可以尝试调用NVCC查看其版本号: ```bash nvcc --version ``` 预期输出应类似于下面这样表明已正确部署了指定版本的CUDA工具链。 #### cuDNN安装 完成上述步骤后再单独处理cuDNN部分。由于不同应用框架可能依赖特定版本,因此推荐从NVIDIA开发者资源中心挑选匹配项进行本地化部署。具体做法参照所选发行版说明文档中的指导方针实施即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法小狂人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值