scipy库的label函数|标记图像连通域

邻域

​​​​​​​

连通

4 邻域就是上下左右找有没有连着的 1

8 邻域就是上下左右 + 4 个斜线找有没有连着的 1 

label函数用法

# label函数返回两个参数
# labeled_array:标记后的数组
# num_features:连通区域的数量

from scipy.ndimage import label
import numpy as np

a = np.array([[0,0,1,1,0,0],
              [0,0,0,1,0,0],
              [1,1,0,0,1,0],
              [0,0,0,1,0,0]])
labeled_array, num_features = label(a)

label函数标记连通区域

默认以 4 邻域划分区域

from scipy.ndimage import label
import numpy as np

a = np.array([[0,0,1,1,0,0],
              [0,0,0,1,0,0],
              [1,1,0,0,1,0],
              [0,0,0,1,0,0]])
labeled_array, num_features = label(a)
print(labeled_array)
'''
[[0 0 1 1 0 0]
 [0 0 0 1 0 0]
 [2 2 0 0 3 0]
 [0 0 0 4 0 0]]
'''
print(num_features)    # 4

修改邻域范围

# 默认是4邻域,即 stru=np.ones([2,2])
stru = np.ones([3,3]) # 修改为8邻域
labeled_array, num_features = label(a, stru)
print(labeled_array)
‘'‘
[[0 0 1 1 0 0]
 [0 0 0 1 0 0]
 [2 2 0 0 1 0]
 [0 0 0 1 0 0]]
'‘'

参考

Scipy(1)—— scipy.ndimage.label-CSDN博客

Python实现统计图像连通域的示例详解 - 老K博客 - 一个源码和技术分享的博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值