毫米波雷达||网口接收雷达原始数据

目录 

1、采集雷达原始数据

 2、通过网口传输数据

参考文献:

1、采集雷达原始数据

像TI或加特兰雷达都有相应的采集板可以用于雷达原始数据获取,一般通过LVDS高速接口和网口传输数据,需要比如256*128*12*4*20 \approx 31.5Mbps(即采样点*啁啾数*天线数*复采样*20Hz)即>31.5Mbps的高速接口才可以实时采集20Hz刷新率的数据。当然通过雷达UART串口也可以获取一点ADC数据,不过受限于串口最大传输速率3.125Mbps,无法实时的获取ADC数据,只能获得单个frame的ADC原始数据。

采用官方自带的软件采集雷达ADC原始数据很方便,但是不够灵活,也不便于实时处理。所以考虑跳过官方软件通过python实时采集ADC原始数据并处理。

以TI雷达为例,官方文档中介绍了配置DCA1000EVM并通过以太网将ADC数据从毫米波传感器捕获到PC的方法。雷达板和采集板之间通过LVDS高速接口连接,采集板通过网口传输数据到PC。

注:LVDS(Low Voltage Differential Signaling,低压差分信号)是一种高速串行数据传输技术,LVDS接口具有以下特点:高速传输能力、低噪声、低功耗、抗电磁干扰和传输距离远。

LVDS 到以太网流:–原始模式:在此模式下,所有 LVDS 数据均按原样捕获并通过以太网接口流式传输。DCA1000EVM遵循 UDP 协议,支持14个预定义命令。DCA1000EVM的配置和状态通过配置端口进行通信。数据端口用于传输原始模式/数据分离模式数据。

原始模式下UDP数据格式如下图,包括三个部分:数据包序号、字节大小和雷达原始数据部分。以太网(Ethernet)数据帧长度必须在46~1500字节之间,这是以太网的物理特性决定的。这个1500字节为链路层的最大传输单元MTU,实际是网络层IP数据报的长度限制。因为IP数据报首部20字节,UDP数据报首部8字节,所以UDP数据报的数据区最大长度为1472字节。下图中UDP数据报数据区的最大长度即为1472字节,当然一帧雷达原始数据远比这大,所以会分为若干个传输。由于UDP特性,某一个数据传送中丢失时,无法重传,不过由于数据中包含序号信息可以将该部分数据置0。

<think>嗯,用户想了解毫米波雷达原始数据的处理和解析方法。根据提供的引用资料,首先需要确定用户的具体需求。他们可能是在做自动驾驶或者无人船相关的项目,需要处理从TI毫米波雷达获取的原始数据。 首先,我需要整理引用中的关键点。引用1提到TI雷达的Lane数据交换和Matlab代码,以及不同型号的数据格式差异,比如xWR12xx、xWR14xx和xWR16xx的实数和复数采样格式。引用2和3介绍了通过DCA1000EVM采集数据,使用LVDS和以太网传输,以及解析时的C语言和Python方法。引用4则提到了毫米波雷达在无人船中的应用,结合其他传感器提升感知精度。 接下来,用户可能需要了解整个处理流程,包括数据采集、格式解析、预处理和算法应用。数据采集部分要说明硬件配置,比如DCA1000EVM的作用。数据格式解析需要区分不同型号雷达的实数/复数采样,以及如何将原始二进制转换为可处理的数据结构。预处理可能涉及校准和滤波,而算法部分则包括2D-FFT和CFAR检测等。 用户可能遇到的问题包括如何区分不同雷达型号的数据格式,如何处理实数和复数数据,以及具体的代码实现方法。需要引用提供的资料来支持这些步骤,比如引用3中的Python解析示例和Matlab代码。 还需要考虑用户是否具备相关硬件和软件环境,比如Matlab或Python环境,以及是否有DCA1000EVM设备。可能还需要提醒他们注意不同型号雷达的数据结构差异,避免解析错误。 最后,生成相关问题时要覆盖硬件配置、数据格式、解析工具和算法应用等方面,帮助用户深入理解整个流程。</think>### 毫米波雷达原始数据处理与解析方法 #### 1. **数据采集与传输** 毫米波雷达原始数据通过LVDS高速接口传输到采集板(如DCA1000EVM),再通过以太网发送到PC[^2]。关键配置包括: - 雷达型号(如xWR12xx/xWR16xx)决定数据格式(实数/复数采样) - DCA1000EVM的FPGA固件需与雷达型号匹配 - 网口传输协议需设置正确IP和端口 #### 2. **数据格式解析** ##### (1) 数据结构区分 - **xWR12xx/xWR14xx** 实数采样:$每个采样点=16位有符号整数$ 复数采样:$I/Q交替存储,每通道占16位$[^3] - **xWR16xx/IWR6843** 实数采样:$ADC数据按LVDS Lane分组存储$ 复数采样:$每个采样点包含I/Q两分量$[^1] ##### (2) 二进制解析示例(Python) ```python import numpy as np # 读取二进制文件 raw_data = np.fromfile('adc_data.bin', dtype=np.int16) # 复数数据重组(以xWR16xx复数采样为例) complex_data = raw_data[::2] + 1j * raw_data[1::2] ``` #### 3. **数据预处理** - **校准处理** 消除硬件偏差:$y_{calibrated} = y_{raw} - \text{DC偏移量}$ - **数据分帧** 按脉冲周期划分数据块:$每帧长度=采样点数 \times 通道数 \times 脉冲数$ - **滤波处理** 常用窗函数:$Hamming窗:w(n)=0.54-0.46\cos(\frac{2\pi n}{N-1})$[^3] #### 4. **核心算法实现** ##### (1) 2D-FFT处理 $$ \begin{aligned} &\text{距离FFT: } X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N} \\ &\text{多普勒FFT: } Y(m) = \sum_{l=0}^{L-1} X(l)e^{-j2\pi lm/L} \end{aligned} $$ Python实现示例: ```python range_fft = np.fft.fft(complex_data, axis=0) doppler_fft = np.fft.fft(range_fft, axis=1) ``` ##### (2) CFAR检测 使用有序统计CFAR(OS-CFAR): $$ P_{fa} = \left( \frac{N_{ref}}{N_{ref} + k} \right)^N $$ 其中$N_{ref}$为参考单元数,$k$为比例因子[^4] #### 5. **验证与可视化** - 距离-多普勒图:`plt.imshow(np.abs(doppler_fft))` - 点云生成:通过峰值检测算法提取目标三维坐标 - 数据校验:检查ADC数据范围(通常应在±32767之间)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值