毫米波雷达||基础知识1(雷达方程~FMCW雷达原理)

最近准备秋招,所以把一些雷达知识总结记录一下,加深印象。

1.雷达方程

雷达方程给出了发射信号功率、接收信号功率、反射目标距离、反射目标特性和天线特性之间的关系。其他变量不变的情况下,雷达的最大探测距离与发射功率的四次方根成正比

 雷达是依靠目标散射的回波能量来探测目标的,天线充当雷达系统和电磁波传播介质之间的接口。雷达方程定量地描述了作用距离和雷达参数及目标特性之间的关系

2.毫米波雷达工作原理

①毫米波雷达介绍

毫米波 (mmWave) 是一类使用短波长(毫米量级)电磁波的特殊雷达技术。雷达系统发射的电磁波信号被其发射路径上的物体阻挡继而会发生反射。通过捕捉反射的信号,雷达系统可以确定物体的距离、速度和角度。 毫米波雷达可以采用调频连续波 (FMCW) 。FMCW雷达连续发射调频信号,以测量距离以及角度和速度。

像TI和加特兰等雷达芯片集成了发射和接收的射频组件,还有ADC、DSP、MCU等数字组件以提供信号处理能力。

### FMCW毫米波雷达角度测量原理及实现 FMCW毫米波雷达的角度测量依赖于多天线阵列接收信号的能力以及基于这些信号的相位差分析。以下是详细的原理和实现方式: #### 1. 测角核心概念 角度测量的核心在于利用多天线阵列接收到的目标回波信号之间的**相位差**或**波束方向信息**来推导目标的位置关系。具体来说,当多个天线单元接收到同一目标反射回来的信号时,由于各天线位置不同,信号到达时间会存在差异,从而引起相位变化[^2]。 #### 2. 数学建模与算法描述 假设雷达系统中有 \(N\) 个接收天线排列成均匀线性阵列 (ULA),相邻两天线间距为 \(d\)。对于距离雷达一定远近的一个目标,其相对于阵列法向的方向可以由方位角 \(\theta\) 表示,则第 \(n\) 号天线上的信号相比第一个天线会有如下形式的额外路径延迟: \[ \Delta t_n = \frac{d(n-1)\sin{\theta}}{c} \] 其中 \(c\) 是光速。由此产生的相位差可表示为: \[ \phi_n = 2\pi f_c \cdot \Delta t_n = \frac{2\pi d}{\lambda} (n-1) \sin{\theta}, \quad n=1,\dots,N, \] 这里 \(f_c\) 和 \(\lambda\) 分别代表载波频率及其对应的波长。 通过对上述方程组求解即可得到目标所在的空间角度参数——即通常所说的水平面内的方位角 (\(azimuth\)) 或垂直面上的仰角/俯视角 (\(elevation\))。 #### 3. 实际应用中的技术手段 为了提高精度并减少误差影响,在实际工程设计中常采用以下几种策略和技术手段来进行更精确有效的角度估计: ##### (1)FFT-Based DOA Estimation 方法 快速傅里叶变换(Fast Fourier Transform, FFT)被广泛应用于频谱分析领域当中。通过对接收数据做二维或者更高维度下的离散傅立叶转换操作后能够直观观察到能量分布情况进而定位最强响应对应的具体空间取向。 ```python import numpy as np def fft_based_doa_estimation(received_signal_matrix): """ Perform Direction of Arrival estimation using Fast Fourier Transform. Parameters: received_signal_matrix : ndarray Matrix containing signals from multiple antennas over time samples. Returns: estimated_angles : list[float] List of angles corresponding to detected targets' directions. """ spectrum = np.fft.fftshift(np.abs(np.fft.fftn(received_signal_matrix)), axes=-1) peaks_indices = find_peaks(spectrum)[-1].tolist() angular_resolution = calculate_angular_res(len(received_signal_matrix)) estimated_angles = [(idx - len(peaks_indices)/2)*angular_resolution for idx in peaks_indices] return estimated_angles ``` ##### (2)MUSIC Algorithm 多重信号分类(Multiple Signal Classification, MUSIC)是一种高分辨率超分辨DOA估计算法之一。它不需要预先知道源数目的情况下也能提供较好的性能表现尤其适合复杂场景下区分密集靠近物体的情况。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值