离散数学
第二章 二元关系
2.1 关系运算对种类的影响

2.2 集合上能定义多少关系


2.3 用关系矩阵计算复合关系
PS:不容易出错

2.4 求逆没有关系数量的变化
2.5 等价关系:自反、对称、传递
1、等价关系与划分是一一对应的。

2、组合数求法:
C 2 n n n + 1 \frac{C_{2n}^{n}}{n+1} n+1C2nn
3、stirling数:
第二类stirling数: ( n r ) \tbinom{n}{r} (rn)
∑ r = 1 n ( n r ) \sum_{r=1}^{n}{\tbinom{n}{r}} r=1∑n(rn)
2.6 偏序关系:自反、反对称、传递
1、 R R R为偏序关系,记为 ⪯ \preceq ⪯,序偶:
< X , ⪯ > <X, \preceq> <X,⪯>
称为偏序集。
2、盖住必须是直接的,中间不能有其他的元素

3、哈斯图:

4、全序(线序): < X , ⪯ > <X, \preceq> <X,⪯>是偏序集, X X X是一个链(每两个元素都有关系)
良序集合一定是全序集,有限的全序集和一定是良序集合。
5、特殊元素:
-
极大(小)元:没有比他更大(小)的
存在但不唯一
-
最大(小)元:比所有元素大(小)的
可以不存在,但如果存在,必定唯一
-
上下界、上下确界:比所有元素大(小)的
界存在时确界也不一定存在


6、函数映射
f : X ⟶ Y f:X \longrightarrow Y f:X⟶Y
1、成为函数的条件:
- X X X的每个元素都有像(存在性条件)
- X X X的每个元素都只有一个像(唯一性条件)
2、用矩阵表示函数时,矩阵每一行必须有一个且只有一个值为1的项。
3、 X × Y X \times Y X×Y共有 m × n m \times n m×n个序偶, X X X到 Y Y Y有 2 m n 2^{mn} 2mn个不同关系,但只有 n m n^m nm个函数。

4、可逆函数是双射的
5、复合函数:

第三章 代数系统的一般概念和性质
3.1 运算
1、 A A A上的 n n n元运算: f ⋅ A n ⟶ B f \cdot A^{n} \longrightarrow B f⋅An⟶B
2、左右幺元若同时存在,则必定相等且唯一。
3、左右零元若同时存在,则必定相等且唯一。
4、逆元可不唯一,但是:
若 A A A有幺元,且运算可结合,那么左逆元存在时,必定是右逆元。
5、多于1个元素的集合中,幺元一定不是零元
3.2 代数系统
1、非空集合 A A A,连同定义在 A A A上的封闭运算,所组成的系统,称为一个代数系统,简称代数。
3.3 同态
1、 V 1 = < S 1 , ∘ > V_1 = <S_1, \circ> V1=<S1,∘>, V 2 = < S 2 , ∗ > V_2 = < S_2, \ast> V2=<S2,∗>, φ \varphi φ是 S 1 S_1 S1到 S 2 S_2 S2的映射
运算的像等于像的运算:
φ ( x ∘ y ) = φ ( x ) ∗ φ ( y ) \varphi(x \circ y) = \varphi(x) \ast \varphi(y) φ(x∘y)=φ(x)∗φ(y)
2、 V 1 = < S 1 , ∘ > V_1 = <S_1, \circ> V1=<S1,∘>, V 2 = < S 2 , ∗ > V_2 = < S_2, \ast>