离散数学一些内容的整理

离散数学

第二章 二元关系

2.1 关系运算对种类的影响

image-20210121185331787

2.2 集合上能定义多少关系

img img

2.3 用关系矩阵计算复合关系

PS:不容易出错

image-20201229161159237

2.4 求逆没有关系数量的变化

2.5 等价关系:自反、对称、传递

1、等价关系与划分是一一对应的。

image-20201229163624149

2、组合数求法
C 2 n n n + 1 \frac{C_{2n}^{n}}{n+1} n+1C2nn
3、stirling数

​ 第二类stirling数: ( n r ) \tbinom{n}{r} (rn)
∑ r = 1 n ( n r ) \sum_{r=1}^{n}{\tbinom{n}{r}} r=1n(rn)
image-20201229164537386

2.6 偏序关系:自反、反对称、传递

1、 R R R为偏序关系,记为 ⪯ \preceq ,序偶:
< X , ⪯ > <X, \preceq> <X,>
称为偏序集。

2、盖住必须是直接的,中间不能有其他的元素

image-20210113114046247

3、哈斯图

image-20201230095645824

4、全序(线序) < X , ⪯ > <X, \preceq> <X,>是偏序集, X X X是一个链(每两个元素都有关系)

良序集合一定是全序集,有限的全序集和一定是良序集合。

5、特殊元素

  • 极大(小)元:没有比他更大(小)的

    存在但不唯一

  • 最大(小)元:比所有元素大(小)的

    可以不存在,但如果存在,必定唯一

  • 上下界、上下确界:比所有元素大(小)的

    界存在时确界也不一定存在

image-20201230095707518 image-20201229185222056

6、函数映射
f : X ⟶ Y f:X \longrightarrow Y f:XY
1、成为函数的条件:

  • X X X的每个元素都有像(存在性条件)
  • X X X的每个元素都只有一个像(唯一性条件)

2、用矩阵表示函数时,矩阵每一行必须有一个且只有一个值为1的项。

3、 X × Y X \times Y X×Y共有 m × n m \times n m×n个序偶, X X X Y Y Y 2 m n 2^{mn} 2mn个不同关系,但只有 n m n^m nm个函数。

image-20201229191851544

4、可逆函数是双射的

5、复合函数:

image-20201229192129007

第三章 代数系统的一般概念和性质

3.1 运算

1、 A A A上的 n n n元运算: f ⋅ A n ⟶ B f \cdot A^{n} \longrightarrow B fAnB

2、左右幺元若同时存在,则必定相等且唯一

3、左右零元若同时存在,则必定相等且唯一

4、逆元可不唯一,但是:

​ 若 A A A有幺元,且运算可结合,那么左逆元存在时,必定是右逆元

5、多于1个元素的集合中,幺元一定不是零元

3.2 代数系统

1、非空集合 A A A,连同定义在 A A A上的封闭运算,所组成的系统,称为一个代数系统,简称代数

3.3 同态

1、 V 1 = < S 1 , ∘ > V_1 = <S_1, \circ> V1=<S1,> V 2 = < S 2 , ∗ > V_2 = < S_2, \ast> V2=<S2,> φ \varphi φ S 1 S_1 S1 S 2 S_2 S2的映射

运算的像等于像的运算:
φ ( x ∘ y ) = φ ( x ) ∗ φ ( y ) \varphi(x \circ y) = \varphi(x) \ast \varphi(y) φ(xy)=φ(x)φ(y)

2、 V 1 = < S 1 , ∘ > V_1 = <S_1, \circ> V1=<S1,> V 2 = < S 2 , ∗ > V_2 = < S_2, \ast> V2=<S2,> φ \varphi φ S 1 S_1 S1 S 2 S_2 S2的:

  • 单射,单一同态
  • 满射,满同态
  • 双射,同构

3.4 同构

1、同构映射不一定是唯一的,同构是可逆的

2、同构的必要条件:

  • 运算的个数相同
  • 集合元素的个数相同
  • 运算定义相同

3、同构是一种关系,而且是一个等价关系自反、对称、传递

第四章 典型代数系统

4.1 半群

1、代数系统(封闭 < G , ∗ > <G, \ast> <G,>

  • ∗ \ast G G G上的满足结合律的二元运算

则称此代数系统为半群

2、 B ⊆ G B\subseteq G BG < B , ∗ > <B, \ast> <B,>为半群,则 < B , ∗ > <B, \ast> <B,> < G , ∗ > <G, \ast> <G,>子半群

3、有限的半群存在等幂元

4、运算 ∗ \ast 可交换 < G , ∗ > <G, \ast> <G,>可换半群

5、运算 ∗ \ast 有幺元 < G , ∗ > <G, \ast> <G,>含幺半群(独异点)

6、独异点的运算表中,任意两行或两列都是不同的。

4.2 群

1、代数系统(封闭) < G , ∗ > <G, \ast> <G,>

  • ∗ \ast G G G上的满足结合律的二元运算
  • ∗ \ast 存在幺元 e e e
  • G G G中每个元素都有逆元

则称此代数系统为

G G G中元素个数记为群的阶;等于 e e e的最小幂次记为元素的阶
元 素 阶 ≤ 群 的 阶 元素阶\le群的阶
2、若 ∗ \ast 可交换,群就是阿贝尔群(交换群)。

3、从同构意义上看,一二三四阶群都只有一个

4、若元素阶最大为2,则群一定为阿贝尔群

5、阶数大于1的群,没有零元

6、 a , b ∈ G , a ∗ x = b a,b \in G, a \ast x = b a,bG,ax=b必存在唯一解

7、由于群是独异点加条件构造的,所以运算表中,任意两行或两列都是不同,即每行每列都是元素的一个置换(全排列)。

8、

image-20201230095913352

4.3 子群

1、 S S S G G G非空子集,若 < S , ∗ > <S, \ast> <S,>也是群,那么他是 < G , ∗ > <G, \ast> <G,>的子群。

2、平凡子群: S = { e } S = \{e\} S={e} S = { G } S = \{G\} S={G}

群的幺元一定是子群的幺元

3、证明子群:

  • B B B G G G的非空有限子集,只要运算 ∗ \ast 封闭,则 < B , ∗ > <B, \ast> <B,>是子群。

  • S S S G G G的非空子集, S S S中任意两个元素 a , b a,b a,b,都有
    a ∗ b − 1 ∈ S a \ast b^{-1} \in S ab1S
    < S , ∗ > <S, \ast> <S,>是子群。

4.4 循环群与置换群

1、生成元:能够用幂次表示群中所有元素的元素

生成元的阶数与群的阶数相同

2、四元群不是循环群

3、循环群必定是阿贝尔群

4、

  • 无限阶循环群 G = < a > G=<a> G=<a>生成元为

a 和 a − 1 a 和 a^{-1} aa1

  • n(有限)阶循环群 G = < e , a , a 2 , a 3 , . . . , a n − 1 > G = <e, a, a^{2}, a^{3},...,a^{n-1}> G=<e,a,a2,a3,...,an1>,生成元为:

a t a^{t} at

​ (当且仅当 t 与 n 互质)

5、置换群:

S S S S S S的任何一个双射,就称为 S S S S S S的置换。

6、置换群可以用不交的轮换之积表示。

7、任一有限群均与一个置换群同构

4.5 拉格朗日定理

1、 < G , ∗ > <G, \ast> <G,>是有限群, < H , ∗ > <H, \ast> <H,>是其子群,若 ∣ G ∣ = m , ∣ H ∣ = n |G| = m, |H| = n G=m,H=n,则 n ∣ m n|m nm

2、子群存在时,子群的阶数一定是原群阶数的因子(反过来不成立)

3、

  • 元素阶数能整除群的阶数
  • a m = e a^{m} = e am=e

4、

  • 素数阶群没有非平凡子群
  • 素数阶群必是循环群除幺元外都为生成元

5、 m m m阶循环群必有因子阶循环子群

4.6 环与域

1、环:

  • 代数系统(封闭 < A , + , ⋅ > <A, +, \cdot> <A,+,>
  • < A , + > <A, +> <A,+>阿贝尔群
  • < A , ⋅ > <A, \cdot> <A,>半群
  • ⋅ \cdot + + +分配

2、

如果 < A , ⋅ > <A, \cdot> <A,>可交换, < A , + , ⋅ > <A, +, \cdot> <A,+,>是交换环。

如果 < A , ⋅ > <A, \cdot> <A,>有幺元, < A , + , ⋅ > <A, +, \cdot> <A,+,>是含幺环。

3、整环

  • 代数系统(封闭 < A , + , ⋅ > <A, +, \cdot> <A,+,>
  • < A , + > <A, +> <A,+>阿贝尔群
  • < A , ⋅ > <A, \cdot> <A,>可交换 独异点,且无零因子(任意两个元素的运算不等于乘法零元,等价于乘法消去律
  • ⋅ \cdot + + +分配

可换含幺无零因子环

4、域

  • 代数系统(封闭 < A , + , ⋅ > <A, +, \cdot> <A,+,>
  • < A , + > <A, +> <A,+>阿贝尔群
  • < A , ⋅ > <A, \cdot> <A,>阿贝尔群
  • ⋅ \cdot + + +分配

5、域一定是整环

6、有限整环一定是域

4.7 格与布尔代数

1、格:任两个元素都有==上下确界==的偏序集

不是所有偏序集都是格,即便是格也不一定是子格

image-20201229221956656

2、对偶的偏序集,哈斯图互为颠倒

格的对偶( ∨ \vee 换成 ∧ \wedge ∧ \wedge 换成 ∨ \vee )仍是格

3、由格 < A , ⪯ > <A,\preceq> <A,>诱导的代数系统, < A , ∨ , ∧ > <A, \vee, \wedge> <A,,>,满足:

  • 交换律
  • 结合律
  • 等幂律
  • 吸收律

4、分配格:诱导的代数系统,满足分配律,称这个格为分配格。

5、有界格:如果一个格中存在全下界(最小元)和全上界(最大元),则称该格为有界格。

补元:有界格 < A , ⪯ > <A, \preceq> <A,> a ∈ A a \in A aA,若存在 b ∈ A b \in A bA,使得== a ∨ b = 1 , a ∧ b = 0 a \vee b = 1, a \wedge b = 0 ab=1,ab=0==,则称 b b b a a a补元

(一个元素可以有多个补元,也可以没有补元)

6、有补格:每个元素至少有一个补元有界格

有界分配格中,若一个元素有补元,则一定唯一

7、有补分配格满足德摩根律

8、有补分配格就是布尔格

9、由布尔格诱导的代数系统称为布尔代数,满足:

  • 交换律
  • 结合律
  • 等幂律
  • 吸收律
  • 分配律
  • 零一律
  • 同一律
  • 互补律
  • 对合律
  • 德摩根律

第五章 图的一般概念和性质

5.1 基本概念

1、握手定理:结点度数总和等于变数的两倍

2、在任何图中,度数为奇数的结点必定是偶数个

3、简单图:不含平行边和环

多重图:含平行边

4、完全图:每对结点都有边相连简单图

有向简单图边数: n ( n − 1 ) n(n-1) n(n1)

无向简单图边数: n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1)

5、补图:包含所有结点,及补成完全图所添加的边

6、生成子图:包含所有结点的子图

7、拉姆齐数 R ( k , l ) = n R(k,l)=n R(k,l)=n n n n个人中必定有 k k k个人相识或者 l l l个人互不认识

R ( 3 , 3 ) = 6 R(3,3)=6 R(3,3)=6

8、图的同构

结点和边一一对应

必要条件

  • 结点数目相同
  • 边数相同
  • 度数序列相同

5.2 连通

1、通路、回路

简单通路、回路:通过的各边均不相同

基本通路、回路:通过的各点均不相同(回路首尾相同)

2、长度:的数目

3、 n n n阶图,若两点间有通路,则必定存在一条长度小于等于== n − 1 n-1 n1==的通路

n n n阶图,若两点间有回路,则必定存在一条长度小于等于== n n n==的回路

4、点连通度 ≤ \le 边连通度 ≤ \le 图的最小度

5、割点的充要条件:存在两结点,使得通过这两点的每条通路都经过该点

6、单侧连通:两点间至少单向可达

强连通:任两点均双向可达

弱连通:去掉方向后是无向连通图

7、有向图强连通,当且仅当 G G G中存在一个回路,至少包含 G G G所有结点一次

8、最短路径问题—标号法

5.3 图的矩阵表示

1、邻接矩阵 n × n n \times n n×n

是否邻接

A A A l l l次幂可以得到==长度为 l l l==的通路、回路数目

2、可达性矩阵 n × n n \times n n×n

是否可达(存在通路或回路)

​ 算邻接矩阵的元素个数次幂,然后进行布尔运算

3、关联矩阵 n × m n \times m n×m

无向图:的关联次数

有向图:正为边的起点,负为终点

第六章 特殊图

6.1 欧拉图

1、经过每边一次且仅一次

2、无向图 G G G 存在欧拉通路,当且仅当 G G G 连通,且有 0 0 0 个或 2 2 2奇数度结点

3、无向图 G G G 存在欧拉回路,当且仅当 G G G 连通,且度结所有结点均为偶数度

哥尼斯堡七桥问题4个结点的度数都为奇数

一笔画问题

4、单向欧拉通路(回路)

5、有向图 G G G 存在单向欧拉通路,当且仅 G G G 连通,且除了两个结点外每个结点入度等于出度,这两个结点一个入度比出度大 1 1 1,一个小 1 1 1

6、有向图 G G G 存在单向欧拉回路,当且仅 G G G 连通,且每个结点入度等于出度

7、求欧拉回路

image-20201230003422811

6.2 哈密尔顿图

1、每点一次且仅一次

2、必要条件:
W ( G − s ) ≤ ∣ S ∣ W(G-s) \le |S| W(Gs)S

3、充分条件:

  • 通路:每对结点度数和大于等于 n − 1 n-1 n1
  • 回路:每对结点度数和大于等于 n n n

6.3 二部图(偶图)

1、能划分成两个子集,子集内无边

2、无向图 G = < V , E > G = <V,E> G=<V,E> 是二部图,当且仅当 G G G 中所有回路长度均为偶数

3、相异性条件

二部图 G = < V 1 , V 2 , E > G=<V_1,V_2,E> G=<V1,V2,E> ∣ V 1 ∣ ≤ ∣ V 2 ∣ |V_1| \le |V_2| V1V2,存在 V 1 V_1 V1 V 2 V_2 V2完备匹配,当且仅当 V 1 V_1 V1 中任 k k k 个结点至少邻接 V 2 V_2 V2 k k k 个结点。

4、 t t t 条件

二部图 G = < V 1 , V 2 , E > G=<V_1,V_2,E> G=<V1,V2,E>,满足:

  • V 1 V_1 V1 中每个结点至少关联 t t t 条边
  • V 2 V_2 V2 中每个结点至多关联 t t t 条边

则存在 V 1 V_1 V1 V 2 V_2 V2完备匹配

5、奇数个结点的二部图不是哈密尔顿图。

6.4 平面图

1、结点和边都画在平面上,且使得任何两条边除端点外没有交点

2、面的次数之和等于边数的两倍

3、欧拉公式

连通平面图
v − e + r = 2 v-e+r=2 ve+r=2
v v v:结点数

e e e:边数

r r r:面数

4、 v ≥ 3 v \ge 3 v3时,连通简单平面图必要条件
e ≤ 3 v − 6 e \le 3v-6 e3v6

5、库氏定理

一个图是平面图,当且仅当他不包含 K ( 3 , 3 ) K_{(3,3)} K(3,3) K 5 K_5 K5 二度节点内同构的子图

6.5 树

1、

  1. 无回路连通图
  2. 无回路且 e = v − 1 e=v-1 e=v1
  3. 连通且 e = v − 1 e=v-1 e=v1
  4. 无回路,但加边后得到一个且仅一个回路
  5. 连通,但删任一边后都不连通
  6. 每对结点有且只有一条通路

2、非平凡树至少有两片树叶

3、连通图至少有一颗生成树

第七章 命题逻辑

7.1 命题

1、命题:能判断真假陈述句,只有一个真值

感叹句、疑问句、祈使句、悖论等都不是命题

2、变元和常元

常元是命题变元不是。变元经过指派后才是命题

7.2 联结词

P , Q P,Q P,Q都是命题

1、否定 ¬ P \lnot P ¬P

2、合取(与) P ∧ Q P \wedge Q PQ

3、析取(或) P ∨ Q P \vee Q PQ

4、蕴含 P ⟶ Q P \longrightarrow Q PQ (善意的推断)

5、等价 P ⟷ Q P \longleftrightarrow Q PQ

扩展:

  1. 不可兼析取(异或) P ∨ ‾ Q P \overline{\vee} Q PQ

  2. 条件否定(蕴含的逆 P c → Q P \underrightarrow{c} Q P cQ

  3. 与非 P ↑ Q P \uparrow Q PQ

  4. 或非 P ↓ Q P \downarrow Q PQ

7.3 命题公式

1、原子命题:不包含任何联结词

复合命题:至少包含一个联结词

2、命题公式

命题公式不是命题

3、命题公式的分类:

  • 重言式(永真式)
  • 矛盾式(永假式)
  • 可满足式

4、 n n n 个命题变元的公式,共有 2 n 2^{n} 2n 组不同赋值

5、 n n n 个命题变元只能生成 2 2 n 2^{2^{n}} 22n真值不同的命题公式

7.4 真值表

image-20201230011607400 image-20201230011619607 image-20201230011631994

7.5 极小联结词组

1、 D D D 可表示所有联结词,不含冗余联结词

冗余联结词:可由 D D D 中其他联结词表示的联结词

2、例子:

  • { ¬ , ∨ } \{ \lnot, \vee \} {¬,}
  • { ¬ , ∧ } \{ \lnot, \wedge \} {¬,}
  • { ↑ } \{ \uparrow \} {}
  • { ↓ } \{ \downarrow \} {}
image-20201230103412252 image-20210113114316665

7.6 范式

7.7 推理

1、真值表法

2、直接证明法

3、间接证明法

  • 附加前提(CP)
  • 归谬
  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值