离散数学一些内容的整理

离散数学

第二章 二元关系

2.1 关系运算对种类的影响

image-20210121185331787

2.2 集合上能定义多少关系

img img

2.3 用关系矩阵计算复合关系

PS:不容易出错

image-20201229161159237

2.4 求逆没有关系数量的变化

2.5 等价关系:自反、对称、传递

1、等价关系与划分是一一对应的。

image-20201229163624149

2、组合数求法
C 2 n n n + 1 \frac{C_{2n}^{n}}{n+1} n+1C2nn
3、stirling数

​ 第二类stirling数: ( n r ) \tbinom{n}{r} (rn)
∑ r = 1 n ( n r ) \sum_{r=1}^{n}{\tbinom{n}{r}} r=1n(rn)
image-20201229164537386

2.6 偏序关系:自反、反对称、传递

1、 R R R为偏序关系,记为 ⪯ \preceq ,序偶:
< X , ⪯ > <X, \preceq> <X,>
称为偏序集。

2、盖住必须是直接的,中间不能有其他的元素

image-20210113114046247

3、哈斯图

image-20201230095645824

4、全序(线序) < X , ⪯ > <X, \preceq> <X,>是偏序集, X X X是一个链(每两个元素都有关系)

良序集合一定是全序集,有限的全序集和一定是良序集合。

5、特殊元素

  • 极大(小)元:没有比他更大(小)的

    存在但不唯一

  • 最大(小)元:比所有元素大(小)的

    可以不存在,但如果存在,必定唯一

  • 上下界、上下确界:比所有元素大(小)的

    界存在时确界也不一定存在

image-20201230095707518 image-20201229185222056

6、函数映射
f : X ⟶ Y f:X \longrightarrow Y f:XY
1、成为函数的条件:

  • X X X的每个元素都有像(存在性条件)
  • X X X的每个元素都只有一个像(唯一性条件)

2、用矩阵表示函数时,矩阵每一行必须有一个且只有一个值为1的项。

3、 X × Y X \times Y X×Y共有 m × n m \times n m×n个序偶, X X X Y Y Y 2 m n 2^{mn} 2mn个不同关系,但只有 n m n^m nm个函数。

image-20201229191851544

4、可逆函数是双射的

5、复合函数:

image-20201229192129007

第三章 代数系统的一般概念和性质

3.1 运算

1、 A A A上的 n n n元运算: f ⋅ A n ⟶ B f \cdot A^{n} \longrightarrow B fAnB

2、左右幺元若同时存在,则必定相等且唯一

3、左右零元若同时存在,则必定相等且唯一

4、逆元可不唯一,但是:

​ 若 A A A有幺元,且运算可结合,那么左逆元存在时,必定是右逆元

5、多于1个元素的集合中,幺元一定不是零元

3.2 代数系统

1、非空集合 A A A,连同定义在 A A A上的封闭运算,所组成的系统,称为一个代数系统,简称代数

3.3 同态

1、 V 1 = < S 1 , ∘ > V_1 = <S_1, \circ> V1=<S1,> V 2 = < S 2 , ∗ > V_2 = < S_2, \ast> V2=<S2,> φ \varphi φ S 1 S_1 S1 S 2 S_2 S2的映射

运算的像等于像的运算:
φ ( x ∘ y ) = φ ( x ) ∗ φ ( y ) \varphi(x \circ y) = \varphi(x) \ast \varphi(y) φ(xy)=φ(x)φ(y)

2、 V 1 = < S 1 , ∘ > V_1 = <S_1, \circ> V1=<S1,> V 2 = < S 2 , ∗ > V_2 = < S_2, \ast>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值