有 N 头牛站成一行,被编队为1、2、3…N,每头牛的身高都为整数。
当且仅当两头牛中间的牛身高都比它们矮时,两头牛方可看到对方。
现在,我们只知道其中最高的牛是第 P 头,它的身高是 H ,剩余牛的身高未知。
但是,我们还知道这群牛之中存在着 M 对关系,每对关系都指明了某两头牛 A 和 B 可以相互看见。
求每头牛的身高的最大可能值是多少。
输入格式
第一行输入整数N,P,H,M数据用空格隔开。
接下来M行,每行输出两个整数 A 和 B ,代表牛 A 和牛 B 可以相互看见,数据用空格隔开。
输出格式
一共输出 N 行数据,每行输出一个整数。
第 i 行输出的整数代表第 i 头牛可能的最大身高。
数据范围
1≤N≤10000
1≤H≤1000000
1≤A,B≤10000
0≤M≤10000
输入样例:
9 3 5 5
1 3
5 3
4 3
3 7
9 8
输出样例:
5
4
5
3
4
4
5
5
5
注意:
- 此题中给出的关系对可能存在重复
。。。我们先将所有的牛的高度都赋值为最高的高度H,然后对于每对关系,我们将这对关系之间的区间中的每个数减一就好了。注意这一题不会出现区间交叉的情况(会自相矛盾),只会出现嵌套。对于重复的x,y我们可以用map或者set嵌套pair来判断就好了。
虽然这一题可以通过线段树来求解但是直接用差分的话时间效率和空间效率上都会更优,而且代码量也会比较少。
以下是AC代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define IOS ios::sync_with_stdio(false)
const int mac=1e5+10;
const int inf=1e9+10;
int hight[mac];
int main()
{
IOS;
int n,p,h,m;
cin>>n>>p>>h>>m;
hight[0]=h;
set<pair<int,int>>q;
for (int i=1; i<=m; i++){
int x,y;
cin>>x>>y;
if (x>y) swap(x,y);
if (!q.count({x,y})){
q.insert({x,y});
hight[x+1]--;hight[y]++;
}
}
for (int i=1; i<=n; i++){
hight[i]+=hight[i-1];
cout<<hight[i]<<endl;
}
return 0;
}