mnsit中图片的还原与下载
在机器学习中,mnsit中的图片都是以张量的形式储存的。若想看到原本的图像,需要特定的操作。本人在学习《Python深度学习》中,原书代码输入报错,故溯本追源,将其重新修改补齐。(本人并非专业,纯属爱好,欢迎指正。)
这是在anaconda下python语言中,jupyter作为编译器。
import matplotlib.pyplot as plt
from keras.datasets import mnist
(train_images,train_labels),(test_images,test_labels)=mnist.load_data()
digit=train_images[0]
print(digit)
plt.imshow(digit,cmap=a.cm.binary)#单张图片展示与下载
plt.savefig('0.jpg')
plt.show()
i=0#多张图片展示与下载
while i<=10:
p=train_images[i]
plt.imshow(p,cmap=a.cm.binary)
plt.savefig('第'+str(i)+'张'+'.jpg')#保存的迭代
plt.show()
i+=1
github链接如下:https://github.com/NkuPhyHenry/Deep_learning