【24年新算法】TTAO-CNN-LSTM-Attention多变量回归预测,基于三角拓扑聚合优化器(TTAO)优化卷积神经网络(CNN)-长短期记忆神经网络(LSTM)-注意力机制(Attentio

本文介绍了一种基于TTAO优化的CNN-LSTM-Attention模型,用于多变量预测,支持MATLAB2020b及以上版本。算法可用于回归、分类和时序分析,提供测试数据集和代码,以及R2、MAE等评价指标。
摘要由CSDN通过智能技术生成

【24年新算法】TTAO-CNN-LSTM-Attention多变量回归预测,基于三角拓扑聚合优化器(TTAO)优化卷积神经网络(CNN)-长短期记忆神经网络(LSTM)-注意力机制(Attention)的多变量回归预测(可更换为分类/时序预测,具体私聊),Matlab代码,可直接运行。

1.三角拓扑聚合优化器(Triangulation Topology Aggregation Optimizer, TTAO)该成果人于2024年3月发表在SCI一区顶HExpert Systems With Applications上,LSTM可以更换为LSTM,GRU,BiLSTM等。

2.运行环境要求MATLAB版本为2020b及其以上,评价指标包括:R2、MAE、MSE、RMSE等,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 。

3.可做优化SVM/LSSVM/ELM/BP/KELM/RF/DELM/LSTM/BILSTM/GRU/HKELM/PNN/CNN/VMD/ICEEMDAN/组合模型CNN-SVM/CNN-LSTM/CNN-GRU/CNN-BiLSTM/LSTM-Attention/GRU-Attention/CNN-LSTM-Attention等等多种分类/回归/时序/分解模型,具体私信。

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  数据分析
num_size = 0.75;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';

%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

智能算法及其模型预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值