【24年新算法】TTAO-CNN-LSTM-Attention多变量回归预测,基于三角拓扑聚合优化器(TTAO)优化卷积神经网络(CNN)-长短期记忆神经网络(LSTM)-注意力机制(Attention)的多变量回归预测(可更换为分类/时序预测,具体私聊),Matlab代码,可直接运行。
1.三角拓扑聚合优化器(Triangulation Topology Aggregation Optimizer, TTAO)该成果人于2024年3月发表在SCI一区顶HExpert Systems With Applications上,LSTM可以更换为LSTM,GRU,BiLSTM等。
2.运行环境要求MATLAB版本为2020b及其以上,评价指标包括:R2、MAE、MSE、RMSE等,赠送测试数据集,可以直接运行源程序。替换你的数据即可用 。
3.可做优化SVM/LSSVM/ELM/BP/KELM/RF/DELM/LSTM/BILSTM/GRU/HKELM/PNN/CNN/VMD/ICEEMDAN/组合模型CNN-SVM/CNN-LSTM/CNN-GRU/CNN-BiLSTM/LSTM-Attention/GRU-Attention/CNN-LSTM-Attention等等多种分类/回归/时序/分解模型,具体私信。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 数据分析
num_size = 0.75; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
%% 划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
智能算法及其模型预测