BILSTM-ABKDE区间预测,基于双向长短期记忆神经网络BILSTM结合自适应带宽核函数密度估计的多变量回归区间预测(点预测+概率预测+核密度估计)Matlab语言程序已调试好,无需更改代码直

本文介绍了一种利用双向长短期记忆神经网络(BILSTM)与自适应带宽核函数密度估计(ABKDE)进行多变量回归区间预测的方法。Matlab程序已调试,适用于数据预处理和模型应用。文章详细描述了数据划分、归一化及模型性能评估的过程。
摘要由CSDN通过智能技术生成

BILSTM-ABKDE区间预测,基于双向长短期记忆神经网络BILSTM结合自适应带宽核函数密度估计的多变量回归区间预测(点预测+概率预测+核密度估计)

Matlab语言程序已调试好,无需更改代码直接替换Excel运行!

1.LSTM可以定做BILSTM/GRU/BIGRU/CNN-LSTM/CNN-BILSTM/CNN-GRU/CNN-BIGRU/CNN-LSTM-Attention/CNN-BILSTM-Attention/CNN-GRU-Attention/CNN-BIGRU-Attention结合自适应带宽核函数ABKDE密度估计的多变量回归区间预测.

2.自适应带宽核函数密度估计允许在每个数据点周围使用不同的核函数带宽,自适应带宽能够更好地匹配局部密度变化,因此它通常能够减少估计误差,特别是在数据密度变化较大的区域。相比于固定带宽的核密度估计,自适应带宽能够更准确地捕获数据分布的细节。

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  数据分析
num_size = 0.75;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
 

智能算法及其模型预测

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
本文介绍了基于PyTorch实现的双向短期记忆网络(1DCNN-BILSTM-Attention)的多输入单输出回归预测模型。该模型适用于多维时间序列数据的预测,如气象、股票等领域。 1. 数据预处理 在使用模型之前,首先需要对数据进行预处理。一般来说,需要将数据标准化,即使数据的均值为0,方差为1。这可以使用PyTorch提供的torchvision.transforms.Normalize函数实现。 2. 数据集划分 数据集划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于模型的调参,测试集用于模型的评估。可以使用PyTorch提供的Dataset和DataLoader函数来对数据集进行划分和加载。 3. 模型的构建 模型的构建主要包括两个部分:网络结构和损失函数。 网络结构包括卷积层、池化层、双向短期记忆网络层和注意力机制层。卷积层用于提取时间序列数据的特征,池化层用于降低数据的维度,双向LSTM层用于学习时间序列的期依赖关系,注意力机制层用于提高模型的预测精度。 损失函数采用均方误差(MSE)函数。 4. 模型的训练 模型的训练需要确定的参数包括:学习率、批量大小和训练轮数。可以使用PyTorch提供的优化器和学习率调度器来进行训练。 5. 模型的评估 模型的评估需要计算预测结果和真实结果之间的差异。可以使用均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)等指标来评估模型的预测精度。 6. 模型的优化 模型的优化可以通过调整模型的超参数来实现。超参数包括:卷积大小、LSTM的隐藏层数、注意力机制的大小等。 7. 结论 本文介绍了基于PyTorch实现的双向短期记忆网络(1DCNN-BILSTM-Attention)的多输入单输出回归预测模型。该模型可以用于多维时间序列数据的预测,具有较高的预测精度和泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值