BILSTM-ABKDE区间预测,基于双向长短期记忆神经网络BILSTM结合自适应带宽核函数密度估计的多变量回归区间预测(点预测+概率预测+核密度估计)Matlab语言程序已调试好,无需更改代码直

本文介绍了一种利用双向长短期记忆神经网络(BILSTM)与自适应带宽核函数密度估计(ABKDE)进行多变量回归区间预测的方法。Matlab程序已调试,适用于数据预处理和模型应用。文章详细描述了数据划分、归一化及模型性能评估的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BILSTM-ABKDE区间预测,基于双向长短期记忆神经网络BILSTM结合自适应带宽核函数密度估计的多变量回归区间预测(点预测+概率预测+核密度估计)

Matlab语言程序已调试好,无需更改代码直接替换Excel运行!

1.LSTM可以定做BILSTM/GRU/BIGRU/CNN-LSTM/CNN-BILSTM/CNN-GRU/CNN-BIGRU/CNN-LSTM-Attention/CNN-BILSTM-Attention/CNN-GRU-Attention/CNN-BIGRU-Attention结合自适应带宽核函数ABKDE密度估计的多变量回归区间预测.

2.自适应带宽核函数密度估计允许在每个数据点周围使用不同的核函数带宽,自适应带宽能够更好地匹配局部密度变化,因此它通常能够减少估计误差,特别是在数据密度变化较大的区域。相比于固定带宽的核密度估计,自适应带宽能够更准确地捕获数据分布的细节。

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法及其模型预测

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值