GEE查看MODIS的NDVI、EVI产品并生成逐日/逐月NDVI曲线

MOD13Q1

在这里插入图片描述
MOD13Q1有两个产品:NDVI和EVI,每16天为全球提供,分辨率为250M

在这里插入图片描述

通过查看时间,该NDVI产品是16天一景
在这里插入图片描述

MOD09GA

提供逐日的表面反射率产品,分辨率为500m
在这里插入图片描述

计算逐日/逐月NDVI生成曲线

在这里插入图片描述

在这里插入图片描述

// 公众号:GEEer成长日记
var roi = ee.FeatureCollection('projects/a-flyllf0313/assets/HeBei');
Map.centerObject(roi, 7);

 
//老样子,还是先加载影像
var dailyNDVI = ee.ImageCollection("MODIS/MOD09GA_006_NDVI")
                     .filterDate('2022-10-20', '2023-06-30')
                     .select('NDVI');
print(dailyNDVI)//看看一年有多少副影像
var colorizedVis = {  min: 0.0,  max: 1.0,  palette: [  
   'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901', 
      '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',  
        '012E01', '011D01', '011301'  ],};
Map.addLayer(dailyNDVI.mean().clip(roi), colorizedVis, 'dailyNDVI');
print(ui.Chart.image.series(dailyNDVI, roi, ee.Reducer.mean(), 1000));
//为了省时省力,码字太累了。所以这边统计的时候像素大小选择为1000,大家可以自行调整
 
//先筛选我们研究的时间范围
var years = ee.List.sequence(2022, 2023);
var months = ee.List.sequence(1, 12);
//将逐日数据生成月平均数据
var monthlymeanNDVI =  ee.ImageCollection.fromImages( 
 years.map(function (y) {  
   return months.map(function(m) {   
   return dailyNDVI.filter(ee.Filter.calendarRange(y,y, 'year')).filter(ee.Filter.calendarRange(m, m, 'month')).mean().set('year', y).set('month', m).set('system:time_start', ee.Date.fromYMD(y, m, 1)); 
      });  }).flatten());
 // Create and print charts.
 print(ui.Chart.image.series(monthlymeanNDVI, roi, ee.Reducer.mean(), 1000));

在这里插入图片描述

参考博文

GEEer成长日记二:Modis_NDVI逐日和逐月时间序列分析

### 下载年度平均植被NDVI数据集的方法 对于获取年度平均植被NDVI数据,可以考虑使用来自不同源的数据集。例如,MOD13A3植被指数数据集提供了自2000年起逐月1km分辨率的NDVI数据[^1]。为了获得年度平均值,可以在下载所有相关月份的数据之后自行计算。 另一种方法是利用已经处理好的中国月度1KM植被指数(NDVI)空间分布数据集,此数据集基于SPOT/VEGETATION NDVI卫星遥感数据,通过最大值合成法生成了2001年以来的月度植被指数数据集[^2]。如果目标是中国地区的年度平均NDVI,则可以直接从这类预处理过的数据集中提取所需信息进一步加工成年度统计数据。 此外,还有专门针对中国的长时间序列省市县三级逐月归一化植被指数(NDVI)数据可用,涵盖了2000年至2023年间的信息[^4]。这些数据通常会以Excel表格形式提供给用户,方便快速访问特定城市或区域的历史记录。要得到某一年份的整体情况,只需选取对应年内的每个月份数值求取算术平均即可作为该年的代表值。 最后值得注意的是MODIS还发布了MCD13Q1产品,它不仅包含了传统的NDVI指标,同时也引入了一种改进版本——增强型植被指数(EVI),后者能够更好地反映密集植被区的状态变化特征[^5]。虽然这个产品的原始频率不是按年来发布的,但是可以通过编程手段自动化地收集指定时间段内所有的季度级EVI影像资料再做后续分析工作。 #### Python脚本用于批量下载MODIS MCD13Q1 NDVI/EVI数据通过Google Earth Engine(GEE)平台进行初步处理: ```python import ee ee.Initialize() def get_annual_ndvi(year, region): start_date = f'{year}-12-31' collection = ( ee.ImageCollection('MODIS/006/MCD13Q1') .filterDate(start_date, end_date) .select(['NDVI', 'EVI']) .mean() # 计算年内均值 ) task = ee.batch.Export.image.toDrive( image=collection, description=f'Annual_NDVI_EVI_{region}_{year}', folder='gee_export', scale=250, region=region.geometry(), maxPixels=1e9 ) task.start() print(f'Started export of {year} annual NDVI/EVI data for {region}') # 定义感兴趣的地理边界(这里假设为中国国界) china_boundary = ee.FeatureCollection("users/user_name/china_boundaries") for y in range(2000, 2024): get_annual_ndvi(y, china_boundary) print("All tasks have been submitted.") ``` 上述代码展示了如何借助GEE API实现对中国境内多年间每年一次的NDVIEVI图像集合求取平均的操作流程;同时支持将结果导出至个人谷歌云端硬盘账户中保存以便离线查看或深入挖掘潜在模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海绵波波107

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值