【论文阅读】Identifying High Order Brain Connectome Biomarkers via Learning on Hypergraph

基于超图学习的大脑连接体生物标志物的识别

这篇文章的主要目的为利用超图实现二分类,利用了超图分割(cut)思想,对表达特征的超边权重进行优化,寻找权重最高(即特征重要性最高)的特征,放入分类器中进行分类。

Abstract 摘要

一般来说,大多数的网络连接模型是基于离散时间序列信号之间的相关性建立的,而这些信号仅连接了两个不同的大脑区域,并未涉及三个或更多的大脑区域。

本文提出了一种基于(直推)学习的方法来探索在两个Subject间的显著可区分子网络生物标志物。根据标志物能够很好地将Subject划分为两个类别。例如区分西红柿和土豆,我们都知道红色为西红柿,黄色为土豆,因此它们的颜色便是一种显著可区分的标志物。为了加入更多的大脑区域,本文引入了超图,每条超边连接了同一组Subject,并显示了高度相关的功能连接行为。

超图学习的目标函数为联合优化所有超边的权值,使得学习得到的分类标签与真实标签具有最佳的一致性。

本文采用超图学习的方式,从rs-fMRI图像中找到了高阶儿童自闭症生物标志物,并对该模型对于自闭症诊断的鉴别能力和通用性进行了综合评价,效果显著。

Introduction 概述

大脑可以根据不同的功能被划分为不同的区域,功能相连的区域之间可以组成连接网络,从而对信息进行传递和处理。为了了解神经性障碍的病理基础,许多功能性神经影像学研究了大脑连接之间的异常变化。最近,研究人员还利用功能连接网络(functional connectivity networks)在个人层面诊断脑疾病。

大脑认知背后的振荡活动本质上是数百万个神经元通过多个大脑区域进行的大规模协同工作。而二元的区域到区域的相互作用无法捕获高阶网络结构的模式,这种模式需要涉及三个或更多的大脑区域。近年来,大量证据表明大脑网络具有层次模块化的特点,因此对于高阶网络模式的研究对于神经科学和临床实践具有一定的意义。

本文提出了一种新的方式来发现高阶网络连接组生物标志物,可以用于区分两个临床队列(clinical cohorts)。为了减小计算成本,本文设定以下标准:
a. Small subnetwork architecture。三角形为最简单的子网络类型之一,本文将寻找的高阶连接体模式为三角形团(构建三角形子网络)。
b. Entire functional connectivity flow。检查所有子网络的功能连接行为(暂时可以理解为子网络对应的特征)。
当两个临床队列之间的整个功能连接流表现出显著差异时,连接组模式才被认为是一种生物标志物。

构建子网络库,包括所有可能的三角形小团体。本文利用超图结构,检查每个子网络的功能连接流来判断subject之间的关系。每个Subject作为超图顶点,并为每个Subject形成一条超边,该超边包括在同一子网结构下具有相似功能连接流的其他Subject。
因此寻找高阶生物标记的问题转化为优化超边权值问题,使得超图学习得到的标签与真实的临床标签达到最大程度的一致。权重反映了子网络的重要性。
本文通过寻找儿童自闭症谱系障碍(ASD)的高阶连接体模式,从ABIDE数据集中识别ASD个体。

Method 方法介绍

Method Overview 方法概览

图中的顶点 v v v表示Subject,假设Cohort1有三个Subject,Cohort2有两个Subject。有两个可能的子网络(紫色三角形和红色三角形)。基于子网络对应的功能连接流找到哪个子网络能够更加准确地将两组受试者分类。
一般而言,在同一子网络的情况下,subject的功能连接流具有高相关性时,它们才会落入同一超边中。图中三角形上黑色箭头所指即为功能连接流,因此在根据紫色的子网络进行划分时,因 v 1 v_{1} v1 v 2 v_{2} v2 v 3 v_{3} v3的功能连接流较为相似,因此划入同一超边,其他同理。真实的临床标签与超边的差异越多,则该子网络的重要性就越低,对应的超边的权重越低。
最终将显著性较高的子网络作为rs-fMRI图像的生物标志物。
可以看出,紫色的子网络相比于红色分类更加准确。因此在本例中紫色三角形对应的子网络则为生物标志物。
紫色的子网络相比于红色分类更加准确

Encode Subject-Wise Relationship in Hypergraph 构建超图

给定一组Subjects(就是上图的大脑): V = { V n ∣ n = 1 , . . . , N } V=\left\{V_{n}|n=1,...,N\right\} V={Vnn=1,...,N},每个Subject被分为了 R R R个区域 (上图构建三角形的蓝色点即为区域),在这些区域中任意选择三个组成一个子网络,因此一共有 C = ( R 3 ) C=\begin{pmatrix}R \\3\end{pmatrix} C=(R3)个子网络: Δ = { Δ j ∣ j = 1 , . . . , C } \mathit{\Delta}=\left\{\mathit{\Delta}_{j}|j=1,...,C\right\} Δ={Δjj=1,...,C}。采用一个三元向量来表示功能连接流: α n , j = [ α n , j 1 , α n , j 2 , α n , j 3 ] \alpha_{n,j}=[\alpha_{n,j}^1,\alpha_{n,j}^2,\alpha_{n,j}^3] αn,j=[αn,j1,αn,j2,αn,j3]。采用 + 1 +1 +1 − 1 -1 1来区分两个类别,因此真实标签列向量为 y = [ y 1 , . . . , y N ] T y=[y_1,...,y_N]^T y=[y1,...,yN]T

  1. 构建超图。 定义超图 G = ( V , E ) G=(V,E) G=(V,E) V V V为给定的Subject,采用星扩展算法构建超边:遍历每一个顶点 v n v_n vn,在每一种子网络 Δ j \mathit{\Delta}_{j} Δj的情况下,计算当前顶点与其他顶点的距离 d j ( n , n ′ ) = ∣ ∣ α n , j − α n ′ , j ∣ ∣ 2 2 d_j(n,n')=||\alpha_{n,j}-\alpha_{n',j}||_2^2 dj(n,n)=αn,jαn,j22。距离为前k小的顶点(K邻近算法k-nearest neighborhood)划入同一个超边中。因此一共有 N × C N\times C N×C条超边: E = { e n , j ∣ n = 1 , . . . , N , j = 1 , . . . , C } E=\left\{e_{n,j}|n=1,...,N,j=1,...,C\right\} E={en,jn=1,...,N,j=1,...,C}
  2. 构建关联矩阵。 超图用关联矩阵 H H H来表示顶点之间的关系,行为顶点,列为超边。定义 Θ = N × C {\Theta}=N\times C Θ=N×C,因此 H H H N × Θ N\times \Theta N×Θ的矩阵,对于每一个 h ( n , θ ) h(n,\theta) h(n,θ)有:
    h ( n , θ ) = { 1 , if  v n ∈ e n , j 0 , otherwise h(n,\theta) = \begin{cases} 1, & \text{if }v_n\in e_{n,j} \\ 0, & \text{otherwise} \end{cases} h(n,θ)={1,0,if vnen,jotherwise
  3. 超边权重。 每条超边都赋予一个不为负的权重 w θ w_\theta wθ,并构造一个大小为 Θ × Θ \Theta \times \Theta Θ×Θ的对角矩阵 W W W,对角元素为超边权重。并定义顶点的度为: d ( n ) = ∑ θ = 1 Θ w θ h ( n , θ ) d(n)=\begin{matrix} \sum_{\theta=1}^\Theta w_\theta h(n,\theta) \end{matrix} d(n)=θ=1Θwθh(n,θ),超边的度为 δ ( θ ) = ∑ n = 1 N h ( n , θ ) \delta(\theta)=\sum_{n=1}^N h(n,\theta) δ(θ)=n=1Nh(n,θ)

Discover High Order Brain Connectome Patterns by Hypergraph Learning 目标函数构建

采用超图学习来预测Subject的类别,需要达到两个目的:

  • 估计标签 f f f尽可能地接近真实标签 y y y
  • 确保每条超边内Subject标签的一致性

可以得到如下公式:该公式可查看另一篇论文:关于超图的谱聚类
Ω f ( W ) = ∑ θ = 1 Θ ∑ n , n ′ = 1 N w θ h ( n , θ ) h ( n ′ , θ ) δ ( θ ) ( f n d ( n ) − f n ′ d ( n ′ ) ) 2 \Omega_f(W)=\sum_{\theta=1}^\Theta \sum_{n,n'=1}^N\frac{w_\theta h(n,\theta)h(n',\theta)}{\delta(\theta)}(\frac{f_n}{\sqrt{d(n)}}-\frac{f_{n'}}{\sqrt{d(n')}})^2 Ωf(W)=θ=1Θn,n=1Nδ(θ)wθh(n,θ)h(n,θ)(d(n) fnd(n) fn)2
v n v_n vn v n ′ v_{n'} vn在同一超边, f n d ( n ) − f n ′ d ( n ′ ) \frac{f_n}{\sqrt{d(n)}}-\frac{f_{n'}}{\sqrt{d(n')}} d(n) fnd(n) fn则越小(顶点在同一超边,标签差异越小)
为防止过拟合,对 W W W加上Frobenius范数进行约束,得到目标函数如下:
a r g m i n W , f Ω f ( W ) + λ ∣ ∣ y − f ∣ ∣ 2 2 + μ ∣ ∣ W ∣ ∣ F 2 = f T L f arg min_{W,f}\Omega_f(W)+\lambda||y-f||_2^2+\mu||W||_F^2=f^TLf argminW,fΩf(W)+λyf22+μWF2=fTLf
L = I − D v − 1 2 H W D e − 1 H T D v − 1 2 L=I-D_v^{-\frac{1}{2}}HWD_e^{-1}H^TD_v^{-\frac{1}{2}} L=IDv21HWDe1HTDv21
λ \lambda λ μ \mu μ为两个标量,用于控制数据拟合项和范数强度

目标函数第一部分为减小同一超边内的差异,第二部分为减小真实值与预测值的差异,第三部分为防止权重矩阵W过拟合。

Optimization 目标函数优化

由于 W W W f f f不是共凸的,因此提出以下方式寻找解决方案:

  • Solve Likelihood Vector f。固定 W W W,目标函数简化为:
    a r g m i n ϕ ( f ) = f T L f + λ ∣ ∣ y − f ∣ ∣ 2 2 arg min \phi (f)=f^TLf+\lambda||y-f||_2^2 argminϕ(f)=fTLf+λyf22
    ∂ ϕ ∂ f = 0 \frac{\partial \phi}{\partial f}=0 fϕ=0,可以得到优化函数: f ^ = ( I + 1 λ L ) − 1 y \widehat{f}=(I+\frac{1}{\lambda}L)^{-1}y f =(I+λ1L)1y
  • Optimize the Hypergraph Weight W。同样地,忽略其他无关的部分,目标函数可以简化为:
    a r g m i n ϕ ( W ) = f T L f + μ ∑ θ = 1 Θ ( w θ ) 2 arg min \phi (W)=f^TLf+\mu \sum_{\theta=1}^\Theta(w_\theta)^2 argminϕ(W)=fTLf+μθ=1Θ(wθ)2
    ∂ ϕ ∂ w θ = 0 \frac{\partial \phi}{\partial w_\theta}=0 wθϕ=0,并确保 w ^ θ > 0 \hat{w}_\theta>0 w^θ>0,得到最优超边权值为 w ^ θ = m a x ( f T D v − 1 2 H I θ D e − 1 H T D v − 1 2 f 2 μ , 0 ) \hat{w}_\theta=max(\frac{f^TD_v^{-\frac{1}{2}}HI_\theta D_e^{-1}H^TD_v^{-\frac{1}{2}}f}{2\mu},0) w^θ=max(2μfTDv21HIθDe1HTDv21f,0)

Discover High Order Connectome Biomarkers 寻找关键标志物

在对目标函数优化后,采用平均超边权值来对子网络重要性进行排序,将同一个子网的超边权重加起来: w ^ j = ∑ n = 1 N w ^ ( n , j ) \hat{w}_j=\sum_{n=1}^N \hat{w}(n,j) w^j=n=1Nw^(n,j),当 w ^ j \hat{w}_j w^j大于某一阈值 ξ \xi ξ时,将其认为是显著的生物标志物

Experiments 实验

  • 通过超图直推学习得到关键子网络。
    数据集:纽约大学网站的自闭症脑成像数据交换(ABIDE)数据库,45名自闭症患者(ASD)和47名典型对照(TC)
    在经过一系列预处理以后,将脑部划分为了116个区域,因此所有可能的子网络有 C = ( 116 3 ) = 253460 C=\begin{pmatrix}116 \\3\end{pmatrix}=253460 C=(1163)=253460个,通过线搜索策略将 λ \lambda λ μ \mu μ的范围固定在 ( 0.1 , 10.0 ) (0.1,10.0) (0.1,10.0)内。

实验步骤大概是:构建超图->计算关联矩阵->计算权重(本文没有提及权重计算方法)->迭代优化权值->对权重进行排序
迭代优化权值:根据 f ^ = ( I + 1 λ L ) − 1 y \widehat{f}=(I+\frac{1}{\lambda}L)^{-1}y f =(I+λ1L)1y以及 w ^ θ = m a x ( f T D v − 1 2 H I θ D e − 1 H T D v − 1 2 f 2 μ , 0 ) \hat{w}_\theta=max(\frac{f^TD_v^{-\frac{1}{2}}HI_\theta D_e^{-1}H^TD_v^{-\frac{1}{2}}f}{2\mu},0) w^θ=max(2μfTDv21HIθDe1HTDv21f,0)两个公式进行循环迭代优化,不断更新权重

下图展示了经过超图学习后的10个显著性(权重)最高的子网络

  • 通过关键子网络来识别ASD。
    使用前200个关键子网的功能连接流作为特征表示来分类ASD与TC。采用支持向量机(SVM)训练分类器,表示为 subnetwork-SVM。同时采用支持张量机(STM)训练分类器,表示为subnetwork-STM。
    为证明子网络相对于传统的二元连接的优势,本文对传统的Link-SVM以及Toplink-SVM进行了对比。
    在这里插入图片描述

实验证明子网络效果很棒!

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值