paper
文章平均质量分 95
六九八
在读!想要成为一名优秀的程序员!加油!
展开
-
【论文阅读】Hypergraph Convolutional Network for Group Recommendation
超图卷积在组推荐中的应用原创 2022-08-07 11:59:25 · 1200 阅读 · 2 评论 -
【论文阅读】Bundle Recommendation and Generation with Graph Neural Networks
采用GNN的bundle推荐翻译 2022-08-02 19:41:25 · 2165 阅读 · 6 评论 -
【论文阅读】Two-Phase Hypergraph Based Reasoning with Dynamic Relations for Multi-Hop KBQA
有向超图卷积原创 2022-05-28 18:02:25 · 555 阅读 · 0 评论 -
【论文阅读】Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation
基于图的会话推荐忽略了高阶关系,本文采用超图进行建模,提出一种双通道的超图卷积网络,并将自监督学习的思想集成其中,通过最大化通过DHCN中的两个通道学习的会话表示之间的互信息,作为改进推荐任务的辅助任务原创 2022-05-20 14:50:43 · 1285 阅读 · 0 评论 -
【论文阅读】Simplifying Graph Convolutional Networks
SGC浅读原创 2022-05-06 16:11:25 · 840 阅读 · 0 评论 -
【无标题】Graph Contrastive Learning with Augmentations
本文贡献:设计了四种类型的图数据增强,每种增强都对图数据有一定的先验性提出了用于GNN预训练的图对比学习框架,以便于对于不同的图结构数据学习到稳定的表示。系统研究旨在评估不同类型数据集上对比不同增强的性能,揭示性能的基本原理,并为特定数据集采用框架提供指导GraphCL在半监督学习、无监督表征学习和迁移学习环境下取得原创 2022-04-13 16:03:44 · 888 阅读 · 1 评论 -
【论文阅读】Digraph Inception Convolutional Networks
有向图的Inception网络,提出稀疏的有向图拉普拉斯,并将inception思想引入,设计了可伸缩的感受野原创 2022-04-07 11:50:08 · 1046 阅读 · 1 评论 -
【论文阅读】Directed Graph Convolutional Network
有向图卷积网络摘要介绍定义DGCN一阶邻近与二阶邻近有向图卷积融合运算模型摘要由于GCN的局限性,本文提出了DGCN(有向 图 卷积 网络),通过一阶和二阶邻居关系的应用,并扩展卷积计算。介绍GCN主要存在两个缺点:仅适用于无向图。对于有向图只能采用对称的领接矩阵,得到半正定的拉普拉斯矩阵,但同时也失去了有向图的唯一结构。例如,对于一个表明文章引用关系的有向图,将其转换为无向图是不太合理的。可以采用RNN和GCN的组合来学习时间图,但其添加了额外组件。仅考虑1跳结点特征。在大多数的基于光谱的G原创 2022-03-07 22:28:27 · 6218 阅读 · 4 评论 -
【论文阅读】GCNN Traffic Classification with Graph Neural Network
GCNN Traffic Classification with Graph Neural Network摘要介绍流量分类模型chained graph摘要目前许多最先进的流分类器都是基于卷积网络等深度学习模型从报文种提取特征的。但是其不能够很好地提取数据包之间的组成以及因果关系,从而影响了不同流量类型的预测精度,泛化能力也不够。本文在分组流上提出了一个链图模型,以保持分组流的链图组合序列。在自动提取特征的链图上构建一个图分类器。介绍由于如今流分类粒度越来越细,类型也越来越多,还需对恶意流量进行检原创 2022-03-05 13:15:20 · 1088 阅读 · 0 评论 -
【论文阅读】Hypergraph Neural Networks
Hypergraph Neural Networks超图学习部分超图上的谱卷积超图的傅里叶变换超图上的卷积分析实现实验引文网络分类视觉对象识别超图学习部分定义超图G=(V,E,W)\mathcal{G=(V,E,}W)G=(V,E,W),分别代表顶点、超边、权重。超图可以用关联矩阵HHH来表示:h(n,θ)={1,if v∈e0,otherwiseh(n,\theta) =\begin{cases} 1, & \text{if } v\in e\\0, & \te原创 2021-11-30 21:55:54 · 1925 阅读 · 0 评论 -
【论文阅读】Learning with Hypergraphs: Clustering, Classification, and Embedding
目录AbstractIntroductionAbstract我们通常赋予被调查对象成对的关系,这可以用图来说明。但是在许多现实问题中,我们感兴趣的对象之间的关系比成对的更复杂。如果简单地将复杂的关系压缩成两两关系,将不可避免地导致对我们的学习任务有价值的信息的丢失。因此,我们考虑使用超图来完全表示我们感兴趣的对象之间的复杂关系,因此出现了用超图学习的问题。我们在本文中的主要贡献是将最初在无向图上运行的强大的谱聚类方法推广到超图,并在谱聚类方法的基础上进一步开发超图嵌入和直推分类算法。Introdu原创 2021-11-20 11:27:00 · 2733 阅读 · 4 评论 -
【论文阅读】Identifying High Order Brain Connectome Biomarkers via Learning on Hypergraph
目录AbstractIntroductionMethodMethod OverviewEncode Subject-Wise Relationship in HypergraphDiscover High Order Brain Connectome Patterns by Hypergraph LearningOptimizationDiscover High Order Connectome BiomarkersExperimentsAbstract一般来说,大多数的网络连接模型是基于离散时间序列原创 2021-11-17 22:11:01 · 1366 阅读 · 1 评论