[论文精读]Multiview hyperedge-aware hypergraph embedding learning for multisite, multiatlas fMRI based

论文全名:Multiview hyperedge-aware hypergraph embedding learning for multisite, multiatlas fMRI based functional connectivity network analysis

论文原文:Multiview hyperedge-aware hypergraph embedding learning for multisite, multiatlas fMRI based functional connectivity network analysis - ScienceDirect

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Methods

2.3.1. Hypergraph and HGCN with FCN

2.3.2. The proposed CcSi-MHAHGEL

2.4. Experimental results

2.4.1. Dataset and data preprocessing

2.4.2. Experimental settings

2.4.3. Methods for comparison

2.4.4. Classification performance

2.4.5. Ablation study

2.4.6. Construction of the shared incidence matrix

2.4.7. Most discriminative ROIs discovered by CcSi-MHAHGEL

2.5. Discussions

2.5.1. Visualization of FCN embeddings

2.5.2. Influence of key hyperparameters

2.5.3. Generalization ability of the class-consistency and site-independence modules

2.5.4. Results of CcSi-MHAHGEL with three-atlas-based FCNs

2.5.5. Results of CcSi-MHAHGEL on the whole ABIDE

2.5.6. Influence of hyperedge construction schemes

2.5.7. Limitations and future work

2.6. Conclusion

3. Reference List


1. 省流版

1.1. 心得

(1)既然作者想做的事情是跨站点那么只跨4/21个ABIDE站点是不是没有那么有说服力啊(消融实验测了很多的,19个站点,精度差不多)

(2)超图没什么选择,其实也就是多聚合了一下

(3)做了好多实验

(4)名字取得好长捏,有点让人记不住。最近KAN爆火,感觉凡事还是得从简

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①They proposed Class-consistency and Site-independence Multiview Hyperedge-Aware HyperGraph Embedding Learning (CcSi-MHAHGEL) framework

        ②Existing problems: insufficient researches in multi-site and multi-atlas

        ③Graph construction: one hypergraph per subject

2.2. Introduction

        ①Shortcomings of GCNs: simple structure, inadequate connections between subjects, different brain graph distributions between different sites

        ②Atlas: AAL and HO

        ③Samples: 355 with 167 ASD and 188 HC from the bigest 4 sites from ABIDE 

        ④怎么又是Grad-CAM

        ⑤Their contributions: proposed hypergraph based on multi-atlases, class-consistency and site-independence modules

        ⑥\left | \cdot \right | denotes the cardinality of a set(就是一个集合里面有几个数)

atrophy  n.萎缩 vi.萎缩;衰退    cardinality  n.基数;集的势(mathematics) the number of elements in a set or group (considered as a property of that grouping)

2.3. Methods

2.3.1. Hypergraph and HGCN with FCN

        ①Representation of hypergraph:

        ②Hypergtaph can be represented as G=\left ( V, E, W \right ), where V=\left \{ v_i \right \}^{\left | V \right |}_{i=1} denotes vertex set (ROI), E=\left \{ e_i \right \}^{\left | E \right |}_{i=1} denotes hyperedge set. Each hyperedge e_i has its own weight w(e_i), and W=diag({w(e_i)}^{\left | E \right |}_{i=1}) \in \mathbb{R}^{\left | E \right | \times \left | E \right |} denotes diagonal matrix of the hyperedge weights.

        ③All the hyperedges satisfy \bigcup ^{\left | E \right |}_{i=1} e_i = V

        ④Incidence matrix of G is H \in \mathbb{R}^{\left | V \right | \times \left | E \right |} with 0 or 1

        ⑤Degree of v_i can be calculated by d(v_i)=\sum _{e_j \in E} w(e_j) h (v_i,e_j) (有边就将边权重*1加起来), and its diagonal degree matrices D_v=diag\left ( {d\left ( v_i \right )}^{\left | V \right |} _{i=1}\right ) \in \mathbb{R}^{\left | V \right | \times \left | V \right |}

        ⑥Degree of e_j can be d(e_i)=\sum _{v_i \in V} h (v_i,e_j) and its diagonal degree matrices D_e=diag\left ( {d\left ( e_j \right )}^{\left | E \right |} _{j=1}\right ) \in \mathbb{R}^{\left | E \right | \times \left | E \right |}

        ⑦Hypergraph Laplacian matrix can be expressed as \Delta \in \mathbb{R}^{\left | V \right | \times \left | V \right |}, where \Delta=I-D_v^{-\frac12}HWD_e^{-1}H^TD_v^{-\frac12}.

        ⑧Funcional connectivity network (FCN) matrix each subject: 

\boldsymbol{X}=[\boldsymbol{x}_1,\boldsymbol{x}_2,\ldots,\boldsymbol{x}_N]\in\mathbb{R}^{N\times N}

where the subscript denotes the order number of each ROI. They set x_i for the feature of v_i

        ⑨Similarity between vertexes:

\mathrm{Sim}\left(v_i,v_j\right)=e^{-\frac{\left\|\boldsymbol{x}_i-\boldsymbol{x}_j\right\|_2^2}{2\sigma^2}}

\sigma is set to the mean of the Euclidean distances of all vertex pairs empirically

        ⑩Followed by ④, they further update incidence matrix to:

\left.h\left(v_i,e_j\right)=\left\{\begin{array}{ll}\mathrm{Sim}\left(v_i,v_j\right),&\quad v_i\in e_j,\\0,&\quad v_i\notin e_j.\end{array}\right.\right.

        ⑪To avoid differences weighted incidence matrix between subjects, they calculated it by average FCN

        ⑫Convolution operation on (l+1)-th layer:

\boldsymbol{X}_{(l+1)}=\phi\bigg(\boldsymbol{D}_v^{-\frac{1}{2}}\boldsymbol{H}\boldsymbol{W}\boldsymbol{D}_e^{-1}\boldsymbol{H}^T\boldsymbol{D}_v^{-\frac{1}{2}}\boldsymbol{X}_{(l)}\boldsymbol{\Theta}_{(l)}\bigg)

where \boldsymbol{\Theta}_{(l)} denotes the learnable weight matrix, \phi represents nonlinear activation function

        ⑬总的就是说v是ROI,edge感觉是ROI相似度,然后节点特征是FCN的行捏

2.3.2. The proposed CcSi-MHAHGEL

        The overall framework:

(1)Multiview hyperedge-aware HGCN for learning embeddings of multiatlas-based FCNs

        ①They introduced M categories of atlas, then update X^{(m)}\in\mathbb{R}^{N_m\times N_m}

        ②The corresponding convolution:

\begin{aligned}&\boldsymbol{X}_{(l+1)}^{(m)}\\&=\phi\left(\left(\boldsymbol{D}_{v}^{(m)}\right)^{-\frac{1}{2}}\boldsymbol{H}^{(m)}\boldsymbol{W}_{(l)}^{(m)}\left(\boldsymbol{D}_{e}^{(m)}\right)^{-1}\left(\boldsymbol{H}^{(m)}\right)^{T}\left(\boldsymbol{D}_{v}^{(m)}\right)^{-\frac{1}{2}}\boldsymbol{X}_{(l)}^{(m)}\boldsymbol{\Theta}_{(l)}^{(m)}\right)\end{aligned}

and they separate and combine the \boldsymbol{H}^{(m)} of patients (PTs) and HCs by:

H^{(m)}=H_{\mathrm{HC}}^{(m)}\parallel H_{\mathrm{PT}}^{(m)}\in\mathbb{R}^{N_{m}\times2N_{m}}

        ③They proposed an adaptive hyperedge weight learning. They first obtain the hyperedge features by:

\boldsymbol{E}_{(l)}^{(m)}=\left(\boldsymbol{H}^{(m)}\right)^T\boldsymbol{X}_{(l-1)}^{(m)}

(感觉是个[2e,v] matmul [v,v]的操作,得到个[2e,v]。相当于是一个超边的特征是它连接的所有节点特征的和。但是这样确实一个超边特征是个[1,v]的向量了(⭐但是为什么作者的H是[n,2n]我的是[2e,v]呢我只是想区别一下啦。作者构建了N个超边,所以和N个顶点等同了。每个超边连K个顶点,即从一个ROI开始算距离最近的K-1条边捏))

        ④To squeez the features, they further:

\boldsymbol{S}_{(l)}^{(m)}=\mathrm{Sigmoid}\Big(\boldsymbol{E}_{(l)}^{(m)}\boldsymbol{V}_{(l)}^{(m)}\Big)\in\mathbb{R}^{2N_{m}}

where \boldsymbol{V}_{(l)}^{(m)} denotes learnable vector of weight coefficients. (应该就是[2e,v]mutmal[v,1] )

        ⑤The hyperedge weight matrix \boldsymbol{W}_{(l)}^{(m)}=\mathrm{diag}\Big(\boldsymbol{S}_{(l)}^{(m)}\Big). They mention that the traditional hyperedge weight is not adaptive

        ⑥The apply max and mean pooling in the last layer of HGCN. For finall output \boldsymbol{X}_{L}^{(m)}\in\mathbb{R}^{N_{m}\times d_{m}}, they concatenate max vector and mean vector to f^{(m)}\in\mathbb{R}^{2N_{m}}. And further concatenating f under different atlases: 

\boldsymbol{f}\in\mathbb{R}^{2\sum_{m=1}^MN_m}=k_1\boldsymbol{f}^{(1)}\parallel k_2\boldsymbol{f}^{(2)}\parallel\cdots\parallel k_M\boldsymbol{f}^{(M)}

where k_1,k_2,\ldots,k_M\in\mathbb{R} are the weight coefficients which:

\sum_{i=1}^{M}k_{i}=1,k_i\geq 0,1\leq i\leq M

(2)Class-consistency module for promoting discrimination across classes in the multiatlas-based FCN embeddings

        ①To penalize the intra-class dissimilarities and inter-class similarities, they designed:

\mathcal{L}_{\mathrm{cc}}=\frac{1}{Q}\sum_{y_{i}=y_{j}}\left\|\boldsymbol{f}_{i}-\boldsymbol{f}_{j}\right\|_{2}+\frac{1}{Q}\sum_{y_{i}\neq y_{j}}\mathrm{Max}\big(0,\varepsilon-\|\boldsymbol{f}_{i}-\boldsymbol{f}_{j}\|_{2}\big)

where Q denotes training subjects(嘛他意思就是同类别的缩小差异,不同类别的扩大差异)

(3)Site-independence module for mitigating site influences in the multiatlas-based FCN embeddings

        ①The site information \boldsymbol{s}_i=\left[s_{i,1},s_{i,2},\ldots,s_{i,S}\right]^T\in\mathbb{R}^S is calculated by:

\left.s_{i,p}=\left\{\begin{array}{ll}1,&\quad\text{if subject}i\text{from site}p,\\0,&\quad\text{otherwise}.\end{array}\right.\right.

where it is one-hot encoder~ and S denotes the type of site

        ②They introduce the Hilbert–Schmidt independence criterion (HSIC) (the smaller the less dependence) to minimize FCN embeddings \{f_{i}\}_{i=1}^{Q} and the one-hot site vectors \{s_{i}\}_{i=1}^{Q}:

\mathcal{L}_{\mathrm{si}}=\frac{1}{\left(Q-1\right)^{2}}\operatorname{tr}(\boldsymbol{FUPU})

where U\in\mathbb{R}^{Q\times Q}=I-\frac{1}{Q}\mathbf{1}\mathbf{1}^{T}P_{i,j}=\varphi_{s} (s_{i},s_{j})\in\mathbb{R}^{Q\times Q} and F_{i,j}=\varphi_{f}\left(f_{i},f_{j}\right). Both \varphi are kernel functions, such as linear (the authors choosed), polynomial, and radial basis. Thus:

F_{i,j}=\boldsymbol{f}_i^T\boldsymbol{f}_j \, \mathrm{and} \, P_{i,j}=\boldsymbol{s}_i^T\boldsymbol{s}_j

(4)Classification and loss function

        ①The loss function: L=L_{ce}+\alpha L_{cc}+\beta L_{si}, where \alpha and \beta are tunable hyperparameters or regularization parameters(CE就不多说了吧?交叉熵啊)

2.4. Experimental results

2.4.1. Dataset and data preprocessing

        ①Dataset: ABIDE I/II(作者说的是”ABIDE“,但是根据有21个站点来推断,应该是把I和II加在一起选的,最大的四个)

        ②Samples: 167 ASD and 188 HC:

        ③Preprocessing pipeline: DPARSF 

        ④Preprocessing processes: "head motion correction, co-registration, spatial normalization to the standard Montreal Neurological Institute (MNI) space, spatial smoothing with a 6-mm full width half maximum (FWHM) Gaussian kernel, and band-pass filtering at 0.01 to 0.1Hz."

        ⑤Atlases: AAL 116 ad HO 111, X^{(1)}\in\mathbb{R}^{116\times116} for AAL and X^{(2)}\in\mathbb{R}^{111\times111} for HO

        ⑥FCN: "Fisher’s z-transformed Pearson’s correlation coefficient between BOLD time series of each pair of ROIs"

2.4.2. Experimental settings

        ①Cross validation: 10 fold

        ②Running times: 5

        ③Metrics: accuracy, sensitivity, precision, F1-score, and AUC

        ④Hyperparameters: K=3, hidden dim = 256/64 in the first/second HGCN layer, \phi is ReLU, weight coefficients k_1=0.3,k_2=0.7, MLP: 128/32/2, regularization parameters \alpha =1 \times 10^{-3}\beta =5 \times 10^{-3}

        ⑤Epoch: 30

        ⑥Batch size: 24

        ⑦Learning rate: 0.001

2.4.3. Methods for comparison

        ①Briefly listing and introducing the parameter settings of compared models. All the models adopt the same convolution layers, MLP layers, hidden dim numbers, pochs, batch size, activation function, and learning rate for fair

2.4.4. Classification performance

         ①Comparison table:

the multiview methods (i.e., MGEL, MHGEL, and CcSi-MHAHGEL) mostly perform better performance than all those single-view methods (i.e., SVM, DNN, BrainNetCNN, GEL, BrainGNN, GAT and HGEL)  and the hypergraph-based deep learning methods (i.e., HGEL, MHGEL, and CcSi-MHAHGEL) also outperform simple-graph-based counterparts (namely GEL and MGEL)

2.4.5. Ablation study

        ①Ablation study:

where it concludes different signle atlas models, HGEL with HGCN (HAHGEL), MHGEL with HGCN (MHAHGEL), and CcSi-MHAHGEL w/o loss

2.4.6. Construction of the shared incidence matrix

        ①Ablation between different readout methods:

2.4.7. Most discriminative ROIs discovered by CcSi-MHAHGEL

        ①They got class activation values of ROIs in fully connection layer by Grad-Cam and visualized the top 10 by BrainNet Viewer:

        ②They start to analyse some medical findings

visuospatial  adj. 视觉空间;视觉空间的

2.5. Discussions

2.5.1. Visualization of FCN embeddings

        ①2D t-Distributed Stochastic Neighbor Embedding (t-SNE)

2.5.2. Influence of key hyperparameters

        ①Ablation of K:

        ②Ablation of \alpha and \beta:

        ③Ablation of k_1 and k_2:

2.5.3. Generalization ability of the class-consistency and site-independence modules

        ①Adding two loss functions to other models:

2.5.4. Results of CcSi-MHAHGEL with three-atlas-based FCNs

        ①Three atlas based ablation:

2.5.5. Results of CcSi-MHAHGEL on the whole ABIDE

        ①They choosed 19 sites which more than 10 subjects with 372 ASD and 433 HC:

2.5.6. Influence of hyperedge construction schemes

        ①Introducing the impacts

2.5.7. Limitations and future work

        ①They did not consider sex, age and other influences

        ②There are substitution of HSIC

        ③They only consider static graph

2.6. Conclusion

        ok

3. Reference List

Wang, W. et al. (2024) 'Multiview hyperedge-aware hypergraph embedding learning for multisite, multiatlas fMRI based functional connectivity network analysis', Medical Image Analysis, 94. doi: Redirecting

  • 30
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值