【论文阅读】Simplifying Graph Convolutional Networks

Abstract

在本文中,通过移除非线性和折叠权重矩阵来降低原来的GCN中额外的复杂性。本文从理论上分析了所得到的线性模型,并表明它对应于一个固定的低通滤波器和一个线性分类器。
实验评估表明,这些简化对许多下游应用的准确性都不会产生负面影响。此外,生成的模型可以扩展到更大的数据集,具有自然的可解释性,与FastGCN相比,可以产生高达两个数量级的加速比。

Introduction

GCNs将学习的一阶谱滤波器堆叠在一起,然后使用非线性激活函数来学习图形表示。 我们提出了SGC,通过反复消除GCN层之间的非线性,并将生成的函数折叠为单个线性变换,来降低GCN的过度复杂性。最终的线性模型在各种任务上表现出与GCN相当甚至更高的性能,同时计算效率更高,拟合的参数更少。

Simple Graph Convolution

定义 G = ( V , A ) G=(V,A) G=(V,A) V V V为顶点集, A A A为邻接矩阵, D D D为顶点度矩阵。每个顶点 v i v_i vi有一个对应的 d d d维的特征向量 x i x_i xi,所有特征向量为 X X X。每个顶点都属于 C C C类中的一个, Y Y Y表示类别标签集合。
对于所有顶点集,我们知道子集标签,并希望预测未知标签。

GCN

GCN为每个节点的特征 x i x_i xi学习一种新的特征表示,随后将其用作线性分类器的输入。在每个图卷积层中,节点表示在三个方向更新:特征传播、线性变换和逐点非线性激活 。

Feature propagation

在每个层的开始处,每个节点 v i v_i vi的特征 h i h_i hi用其局部邻域中的特征向量进行平均:
在这里插入图片描述
表示为矩阵运算为:
S = D ~ − 1 / 2 A ~ D ~ − 1 / 2 S=\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2} S=D~1/2A~D~1/2
其中 A ~ = A + I \tilde{A}=A+I A~=A+I D ~ \tilde{D} D~为对应的度矩阵。
因此所有顶点的更新为:
H ˉ ( k ) ← S H ( k − 1 ) \bar{H}^{(k)}\gets SH^{(k-1)} Hˉ(k)SH(k1)

Feature transformation and nonlinear transition

局部平滑后,GCN层与标准MLP相同。每一层都与一个学习的权重矩阵相关联,在输出特征表示之前,逐点应用非线性激活函数,如ReLU 。
H ( k ) ← R e L U ( H ˉ ( k ) Θ ( k ) ) H^{(k)}\gets ReLU(\bar{H}^{(k)}\Theta^{(k)}) H(k)ReLU(Hˉ(k)Θ(k))
第k层的逐点非线性变换之后是第(k+1)层的特征传播。

Classifier

对于节点分类,与标准MLP类似,GCN的最后一层使用softmax分类器预测标签
Y ^ G C N = s o f t m a x ( S H ( k − 1 ) Θ ( k ) ) \hat

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值