注意力权重的可视化

随想,将四个向量经过注意力机制输出后,会获得这四个向量之间相关权重矩阵,怎么可视化?

[
    [0.2276, 0.2630, 0.2277, 0.2186],
    [0.3037, 0.1941, 0.2014, 0.2605],
    [0.2428, 0.2346, 0.2105, 0.3160],
    [0.2364, 0.2941, 0.2894, 0.1616]
]

使用Python中的matplotlib库。下面是一个使用matplotlib绘制热力图的示例代码:

import matplotlib.pyplot as plt
import numpy as np

# 定义权重矩阵
weights = np.array([
    [0.2276, 0.2630, 0.2277, 0.2186],
    [0.3037, 0.1941, 0.2014, 0.2605],
    [0.2428, 0.2346, 0.2105, 0.3160],
    [0.2364, 0.2941, 0.2894, 0.1616]
])

# 绘制热力图
plt.imshow(weights, cmap='hot', interpolation='nearest')

# 添加颜色栏
plt.colorbar()

# 设置横轴和纵轴标签
plt.xlabel('Columns')
plt.ylabel('Rows')

# 显示图形
plt.show()

在这里插入图片描述

以下是使用seaborn绘制热力图的示例代码:

import seaborn as sns
import numpy as np

# 定义权重矩阵
weights = np.array([
    [0.2276, 0.2630, 0.2277, 0.2186],
    [0.3037, 0.1941, 0.2014, 0.2605],
    [0.2428, 0.2346, 0.2105, 0.3160],
    [0.2364, 0.2941, 0.2894, 0.1616]
])

# 绘制热力图
sns.heatmap(weights, cmap='hot', annot=True, fmt=".2f")

# 显示图形
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值