同步定位和映射 (SLAM) 和 3D 重建在室内地轮机器人中具有广泛的应用,例如扫地和送餐。为了推进利用语义信息和多传感器数据增强复杂室内场景中SLAM和三维重建性能的研究,我们提出了一种名为CID-SIMS的新颖而复杂的室内数据集,该数据集从地面轮式机器人的视角提供语义注释的RGBD图像、惯性测量单元(IMU)测量和车轮里程表数据。该数据集由在九个不同场景(包括办公楼和公寓环境)中捕获的 22 个具有挑战性的序列组成。值得注意的是,我们的数据集取得了两项重大突破。首先,首次同时提供语义信息和多传感器数据;其次,首次利用GeoSLAM生成2厘米精度以内的地面实况轨迹和3D点云。通过时空同步地面实况轨迹和三维点云,我们的数据集能够在统一的全局坐标系中评估SLAM和三维重建算法。我们在数据集上评估了最先进的 SLAM 和 3D 重建方法,证明我们的基准是适用的。该数据集在 https://cid-sims.github.io 上公开可用。
【2023数据集】CID-SIMS:从地轮机器人角度提供语义信息和多传感器数据的复杂室内数据集
最新推荐文章于 2025-10-29 16:47:49 发布
1996

被折叠的 条评论
为什么被折叠?



