背景与结论如下:
设平面Σ与三个坐标轴的交点分别为 A(a,0,0),B(0,b,0),C(0,0,c),其中a,b,c为非零常数,则平面∑的方程为
∑:x/a + y/b + z/c = 1
推导:
根据A、B、C三点可得向量AB(-a,b,0)和向量AC(-a,0,c),求得这两个向量的向量积为向量n-(bc,ac,ab)
根据平面点法式方程的定义,将向量n和A点代入:
背景与结论如下:
设平面Σ与三个坐标轴的交点分别为 A(a,0,0),B(0,b,0),C(0,0,c),其中a,b,c为非零常数,则平面∑的方程为
∑:x/a + y/b + z/c = 1
推导:
根据A、B、C三点可得向量AB(-a,b,0)和向量AC(-a,0,c),求得这两个向量的向量积为向量n-(bc,ac,ab)
根据平面点法式方程的定义,将向量n和A点代入: