class RGCNConv(in_channels: Union[int, Tuple[int, int]],
out_channels: int, num_relations: int,
num_bases: Optional[int] = None,
num_blocks: Optional[int] = None,
aggr: str = 'mean', root_weight: bool = True,
is_sorted: bool = False, bias: bool = True, **kwargs)
公式:
in_channels:每个输入样本的大小。元组对应于源维度和目标维度的大小。在没有给定输入特征的情况下,这个参数应该对应于图中的节点数。
out_channels:每个输出样本的大小。
num_relations:关系的数量。
num_bases:这一层将使用基分解正则化方案,其中num_bases表示要使用的bases的数量。
(默认值:None)
num_blocks:如果设置,该层将使用block-diagonal-decomposition正则化方案,
其中num_blocks表示要使用的块数量。(默认值:None)
aggr:要使用的聚合模式 ("add"
, "mean"
, "max"
). (default: "mean"
)
root_weight :如果设置为False,则该层不会将转换后的根节点特征添加到输出中。(默认值True)
is_sorted :如果设置为True,则假设edge_index按照edge_type排序。这避免了数据的内部重新排序,可以提高运行时间和内存效率。(默认值:False)
bias:如果设置为False,层将不会学习加性偏差。(默认值True)
**kwargs:conv.messageppassing的附加参数。