RGCN使用,参数含义及使用

本文详细解释了RGCNConv类的参数,包括输入通道数、输出通道数、关系数量、基分解和块分解正则化选项、聚合模式、根节点权重、排序策略以及偏置项。它是一个用于图卷积网络的构建模块,提供深度学习在图数据处理中的灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

class RGCNConv(in_channels: Union[int, Tuple[int, int]], 
               out_channels: int, num_relations: int, 
               num_bases: Optional[int] = None, 
               num_blocks: Optional[int] = None, 
               aggr: str = 'mean', root_weight: bool = True, 
               is_sorted: bool = False, bias: bool = True, **kwargs)

公式:

in_channels:每个输入样本的大小。元组对应于源维度和目标维度的大小。在没有给定输入特征的情况下,这个参数应该对应于图中的节点数

out_channels:每个输出样本的大小。

num_relations:关系的数量。

num_bases:这一层将使用基分解正则化方案,其中num_bases表示要使用的bases的数量。

                       (默认值:None)

num_blocks:如果设置,该层将使用block-diagonal-decomposition正则化方案,

                        其中num_blocks表示要使用的块数量。(默认值:None)

aggr:要使用的聚合模式 ("add""mean""max"). (default: "mean")

root_weight :如果设置为False,则该层不会将转换后的根节点特征添加到输出中。(默认值True)

is_sorted :如果设置为True,则假设edge_index按照edge_type排序。这避免了数据的内部重新排序,可以提高运行时间和内存效率。(默认值:False)

bias:如果设置为False,层将不会学习加性偏差。(默认值True)

**kwargs:conv.messageppassing的附加参数。

### 关系图卷积网络 (R-GCN) 的原理 关系图卷积网络(R-GCN)扩展了传统的图卷积网络(GCN),以处理具有不同类型边的关系图。在传统 GCN 中,节点聚合来自邻居的信息而不区分这些连接的具体性质;而在 R-GCN 中,则考虑到了不同类型的边所代表的不同关系。 具体来说,在每层传播过程中,R-GCN 对于每一个特定类型 \(r\) 的关系都定义了一个单独的权重矩阵 \(\mathbf{W}_r^{(l)}\)[^1]。这意味着当更新某个节点表示时,会根据不同种类的关系分别计算加权求和后的特征向量,并最终通过某种方式组合起来形成新的节点嵌入: \[h_i^{(l+1)}=\sigma\left(\sum_{r \in \mathcal{R}} \sum_{j \in N_r(i)} \frac{1}{c_{i, r}} \mathbf{W}_{r}^{(l)} h_j^{(l)}+\mathbf{b}\right)\] 其中,\(N_r(i)\) 表示与节点 i 有第 r 类型关系相连的所有邻接点集合;而常数项 \(\frac{1}{c_{i,r}}\) 则用来防止梯度爆炸或者消失的问题[^2]。 ### 实现细节 为了有效地训练大规模稀疏图上的 R-GCN 模型,通常采用如下策略来简化上述公式: - **参数共享**:对于某些任务可以假设相同方向上的所有关系拥有相似的重要性,因此可以在不同的关系间共享同一个权重矩阵。 - **基滤波器方法**:利用一组基础变换矩阵去近似任意数量的关系转换操作,减少所需学习参数的数量。 此外,还可能涉及到其他技术如批标准化(batch normalization),dropout 正则化等以提高泛化能力[^3]。 ```python import dgl.nn.pytorch as dglnn import torch.nn.functional as F class RGNNLayer(nn.Module): def __init__(self, in_feat, out_feat, num_rels): super(RGNNLayer, self).__init__() self.conv = dglnn.RelGraphConv(in_feat, out_feat, num_rels) def forward(self, g, feat, etypes): return F.relu(self.conv(g, feat, etypes)) ``` 这段代码展示了如何使用 DGL 库构建一个简单的单层 R-GCN 层。`dglnn.RelGraphConv` 是专门为实现 R-GCN 设计的一个模块,它接受输入特征 `feat`, 边类型 `etypes` 和图结构 `g` 来执行消息传递过程。 ### 应用场景 R-GCN 已经被成功应用于多个领域内的实际问题解决当中,尤其是在涉及复杂关联模式的数据集上表现优异。例如,在知识库补全任务中,R-GCN 可帮助识别并填补已知事实间的空白部分——即所谓的“链接预测”。另一个典型应用场景是在实体分类方面,这里的目标是从给定的一系列属性描述中推断出未知类别标签。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值