2022《OpenScene: 3D Scene Understanding with Open Vocabularies》阅读笔记2

24 篇文章 74 订阅 ¥19.90 ¥99.00
本文详细介绍了OpenScene的实现细节,包括3D蒸馏、特征融合和MSeg投票策略。在3D蒸馏中,使用PyTorch、Adam优化器和MinkowskiNet进行训练。特征融合考虑了不同数据集的特性,如深度图和激光雷达点的处理。MSeg投票用于多视图预测,简单提示工程提高了LSeg性能。此外,分析了模型在不同标签集间转移的能力以及多视图融合策略的效果。
摘要由CSDN通过智能技术生成

A. Implementation Details

3D Distillation.

我们基于PyTorch实现。为了提取\varepsilon ^{3D},我们使用Adam[26]作为优化器,初始学习率为1e−4,并训练100个epochs。对于MinkowskiNet,我们对ScanNet和Matterport3D实验使用2cm的体素大小,对nuScenes使用5cm的体素尺寸。对于室内数据集,我们将场景的所有点输入到3D主干以具有完整的上下文,但对于蒸馏损失(Eq.2),由于内存限制,在本文中,我们在每次迭代时仅使用20K均匀采样的点特征进行监督。对于nuScenes,我们输入半秒片段内的所有激光雷达点,并且仅使用最后一个时间戳处的点特征进行训练。我们为ScanNet和Matterport3D使用了一个batch size为8的NVIDIA A100(40G)。对于nuScenes,我们使用16的batch size和4个A100 GPU。训练大约需要24小时,推理需要0.1秒。此外,对于所有数据集,我们在蒸馏过程中只将3D点位置作为MinkowskiNet的输入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

初篱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值