一、图像复原与图像增强的区别
图像增强的目的是消除噪声,显现那些被模糊了的细节或简单地突出一幅图像中读者感兴趣的特征,不考虑图像质量下降的原因。图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再根据模型进行反向的推演运算,以恢复原来的景物图像。因此图像复原可以理解为图像降质过程的反向过程。建立图像复原的反向过程的数学模型是图像复原的主要任务。
二、逆滤波复原
1、基本原理
f(x,y)表示输入图像,即理想的、没有退化的图像,g(x,y) 是退化后观察得到的图像,n(x,y)为加性噪声。通过傅立叶变换到频域后为:
图像复原的目的是给定G(u,v)和退化函数H(u,v),以及关于加性噪声的相关知识,得到原图像F(u,v)的估计图像F’(u,v),使该图像尽可能地逼近原图像F(u,v)。用于复原一幅图像的最简单的方法是构造如下的公式: