图像处理之《可逆重缩放网络及其扩展》论文精读

一、文章摘要

图像重缩放是一种常用的双向操作,它首先将高分辨率图像缩小以适应各种显示器或存储和带宽友好,然后将相应的低分辨率图像放大以恢复原始分辨率或放大图像中的细节。然而,非单射下采样映射丢弃了高频内容,导致逆恢复任务存在不适定问题。这可以抽象为具有信息损失的一般图像退化-恢复问题。在这项工作中,我们提出了一个新的可逆框架来处理这一普遍问题,该框架从一个新的角度来模拟双向退化和恢复,即可逆双射变换。该框架的可逆性使其能够以分布的形式对退化前的信息损失进行建模,从而缓解恢复后的不适定问题。具体来说,我们开发了可逆模型来生成有效的退化图像,同时在正向退化过程中将丢失内容的分布转化为潜变量的固定分布。然后,通过对生成的退化图像与随机绘制的潜在变量应用逆变换,使恢复变得易于处理。我们从图像的重缩放开始,实例化模型为可逆的重缩放网络,可以很容易地扩展到类似的脱色-着色任务。我们进一步建议将可逆框架与现有的退化方法(如图像压缩)结合起来,以获得更广泛的应用。实验结果表明,与现有方法相比,我们的模型在从缩小和脱色图像进行放大和彩色重建的定量和定性评估以及图像压缩的速率失真方面都有显著改进。

【课程简介】 本课程基于面向Python的OpenCV,以OpenCV的官方文档的知识脉络为主线,介绍了OpenCV函数的具体使用方法、函数所使用的算法的具体原理。 在介绍函数使用时,提供了大量的程序案例演示。 在介绍具体原理时,采用了通俗易懂的语言和贴近生活的示例来说明问题,尽量避免涉及过于复杂抽象的公式。 课程包含数字图像处理的常用知识点,覆盖面全,方便学员系统深入全面地掌握OpenCV。 【你将收获什么】 1.  掌握数字图像的在计算机内表示的方法和处理的基本原理。掌握数字图像的表示方法是进行图像处理的前提和基础,能够为后续的智能图像处理打下坚实基础。 2.  使用好OpenCV开源库对于提升工作效率具有很大的帮助。OpenCV是优秀的开源库,提供了大量的函数帮助我们提升工作效率。大多数情况下,我们直接调用函数就能够满足我们的需求。同时,它的函数具有较好的交互性,能够根据需要更好地掌控图像处理的具体细节。 3.  学习图像处理的常用算法。课程不仅介绍函数的具体使用,也介绍了常用算法的基本原理,帮助学习者更好地理解图像处理的基本逻辑、方法,快速入门图像处理领域。 【我将如何教你】 1)在“黑盒”和“白盒“之间取得平衡  可以将OpenCV看成“黑盒”,不用关心其函数是如何实现的。在需要实现某一个功能时,直接调用其对应的函数即可,像使用Photoshop的各种功能一样。也可以将OpenCV看成“白盒”,关注其每一个函数的具体实现,认真研究每一个函数的具体实现方法和实现细节。这两种方式都是学习图像处理的很好方式,但是大多数课程过于强调其中某一种,要么忽略了算法的实现、要么忽略了使用方法。本课程尽量将OpenCV在“黑盒”和“白盒”之间取得平衡。既介绍算法的原理和方法,又将点放在如何调用函数上,让学习者能够更加游刃有余地在计算机视觉项目中使用OpenCV来解决具体的问题。 2)将枯燥的算法采用具体的案例介绍  在图像处理中,有大量的算法保证了图像处理的准确、高效。OpenCV将一些常用的算法进行了封装,我们可以直接调用OpenCV的函数来使用对应的算法。但是,深入地理解算法能够帮助学习者更好地使用OpenCV函数。本课程尝试抛弃传统的使用复杂公式介绍算法的形式,尽量通过简单、通俗易懂的生活中实例来帮助学习者理解算法的基本逻辑 3)案例驱动、强调实战 OpenCV是一个庞大的资源库,提供了非常多的函数帮助我们高效地处理问题。初学者使用OpenCV的最大困惑就是熟练地掌握了每一个函数的调用方法,但是在解决实际问题时,不知道具体应该使用哪个函数。本课程通过大量的具体案例帮助学习快速掌握每个函数的应用场景,快速掌握OpenCV的核心使用方法和技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值