各种矩阵汇总

满秩矩阵

一个满秩矩阵是指其行秩等于列秩的矩阵,也就是说,矩阵中的行或列之间没有冗余或线性相关关系,行和列都是线性无关的。一个 m × n 的矩阵,如果其行秩(行向量组的秩)等于其列秩(列向量组的秩),且行秩(列秩)等于矩阵中较小的值(min(m, n)),那么这个矩阵就是满秩矩阵。

举个简单的例子:

考虑一个 3 × 3 的矩阵:
A = [ 1 2 3 4 5 6 7 8 9 ] A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} A= 147258369

我们可以使用行变换或者观察矩阵中的向量来确定其秩。这导致矩阵的秩小于3,实际上这个矩阵的秩为2。因此,矩阵 A 并不是一个满秩矩阵,因为其秩小于最小的维度(3)。

一个满秩矩阵的重要特性在于它可以被视为没有冗余信息的矩阵,这使得它在很多数学和工程问题中非常有用,比如求解线性方程组、矩阵求逆等。

正定矩阵

正定矩阵是指对称矩阵中的所有特征值都为正数的矩阵。对于一个 n × n 的实对称矩阵 A,如果对于所有非零的实向量 x,都有 x T A x > 0 x^T A x > 0 xTAx>0,则称矩阵 A 是正定矩阵。

简单来说,对于一个正定矩阵,当任意非零的实向量 x 被矩阵 A 左乘两次( x T A x x^T A x xTAx)时,结果总是一个正数。

举个例子:

A = [ 2 − 1 − 1 4 ] A = \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} A=[2114]

对于这个 2 × 2 的矩阵 A,它是一个正定矩阵。我们可以进行如下验证:

  1. 计算矩阵 A 的特征值: det ( A − λ I ) = 0 \text{det}(A - \lambda I) = 0 det(AλI)=0,解特征方程可以得到特征值: λ 1 = 1 \lambda_1 = 1 λ1=1 λ 2 = 5 \lambda_2 = 5 λ2=5,两个特征值都大于零。
  2. 对于任意非零的实向量 x(例如, x = [ 1 1 ] x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} x=[11]),计算 x T A x x^T A x xTAx,结果为正数: x T A x = [ 1 1 ] [ 2 − 1 − 1 4 ] [ 1 1 ] = 5 > 0 x^T A x = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 5 > 0 xTAx=[11][2114][11]=5>0

因此,矩阵 A 是一个正定矩阵,因为它的特征值都为正数,且对于所有非零的实向量 x, x T A x x^T A x xTAx始终大于零。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值