本篇笔记首先介绍了矩阵行满秩、列满秩、满秩和降秩等概念,并讨论了矩阵秩与r阶子式值的关系;然后重点介绍了阶梯形矩阵和行简化阶梯形矩阵,该部分内容非常重要,后续章节和考试经常会用到;同时还讨论了阶梯形矩阵的用处和将矩阵化为阶梯形,并由此求矩阵的秩;最后介绍了矩阵秩的两个性质,矩阵的秩与其转置矩阵的秩相等,任意矩阵乘以可逆矩阵秩不变。
1 矩阵秩的表示
矩阵的秩是反映矩阵行之间结构复杂程度的一个词。
记作: r ( A ) = r r(A)=r r(A)=r。
如: r ( A ) = 5 r(A)=5 r(A)=5或 秩 ( A ) = 5 秩(A)=5 秩(A)=5, r r r为 r a n k rank rank的缩写。
规定:零矩阵的秩等零,即 r ( O ) = 0 r(O)=0 r(O)=0。
如果 A A A为 m × n m{\times}n m×n的矩阵,那么 0 ≤ r ( A ) ≤ m i n { m , n } 0{\le}r(A){\le}min\{m,n\} 0≤r(A)≤min{
m,n},
若 r ( A ) = m r(A)=m r(A)=m,代表取了所有的行,称为行满秩;
若 r ( A ) = n r(A)=n r(A)=n,意味着取了所有的列,称为列满秩;
若 r ( A ) = m i n { m , n } r(A)=min\{m,n\} r(A)=min{
m,n},即矩阵为行满秩或列满秩,统称为满秩;
若 r ( A ) < m i n { m , n } r(A)<min\{m,n\} r(A)<min{
m,n},称为降秩。
显然,如果 A A A是方阵,并且为满秩 ⟺ A {\Longleftrightarrow}A ⟺A可逆 ⟺ ∣ A ∣ ≠ 0 {\Longleftrightarrow}|A|{\neq}0 ⟺∣A∣=0。
证明:因为 A A A为方阵,即 A n × n A_{n{\times}n} An×n,所以 r ( A ) = n r(A)=n r(A)=n,说明 n n n阶子式 ≠ 0 {\neq}0 =0,也就是 ∣ A ∣ ≠ 0 |A|{\neq}0 ∣A∣=0,故 A A A可逆。
2 矩阵秩的计算
如果按照矩阵秩的定义计算比较麻烦,例如 A 6 × 8 A_{6{\times}8} A6×8需要依次计算 1 、 2 、 3 、 4 、 5 、 6 1、2、3、4、5、6 1、2、3、4、5、6阶的子式都找出来,并验算非零子式的最大阶数。那怎么求矩阵的秩呢?
定理2.7.1:矩阵 r ( A ) = r ⟺ r(A)=r{\Longleftrightarrow} r(A)=r⟺有一个 r r r阶子式不为 0 0 0,所以 r + 1 r+1 r+1阶子式全为 0 0 0
是否存在 r + 2 r+2 r+2阶以上的子式不为 0 0 0呢?
不可能!
因为根据行列式按行展开可知:行列式的值等于每行元素与对应的代数余子式乘积之和,而 r + 2 r+2 r+2阶行列式代数余子式为 r + 1 r+1 r+1阶,又因为 r + 2 r+2 r+2阶子式全为 0 0 0,所以 r + 2 r+2 r+2阶子式肯定也全为 0 0 0,同理, r + 2 r+2 r+2以上的子式也都肯定全为 0 0 0。
该定理实际很少用来计算矩阵的秩。
例1:求矩阵 [ 1 0 0 0 0 1 0 0 0 0 0 0 ] \begin{bmatrix}\color{red}{1}&\color{red}{0}&0&0\\\color{red}{0}&\color{red}{1}&0&0\\0&0&0&0\end{bmatrix}
100010000000
的秩。
解:很明显可以找到最高 2 2 2阶子式 ∣ 1 0 0 1 ∣ = 1 \begin{vmatrix}1&0\\0&1\end{vmatrix}=1
1001
=1,不等于零,所以矩阵的秩为 2 2 2。
例2:略。
★★★ 3 阶梯形矩阵
定义2.7.3
阶梯形矩阵:① 若有零行在非零行的下面,② 至上而下左起第一个非零元素(首非零元)左边零的个数随行数增加而(严格)增加。
[ ∣ 1 1 1 1 − 0 ∣ 1 0 4 − − 0 0 0 ∣ 5 − ] \begin{bmatrix}\color{red}{|}\color{black}{1}&1&1&1\\\color{red}{-}&&&\\0&\color{red}{|}\color{black}{1}&0&4\\&\color{red}{-}&\color{red}{-}&\\0&0&0&\color{red}{|}\color{black}{5}\\&&&\color{red}{-}\end{bmatrix} ∣1−001∣1−010−014∣5−
矩阵第一行至第三行的首非零元个数依次为 0 , 1 , 3 0,1,3 0,1,3个,首非零元个数随行的增加而增加,所以矩阵是阶梯矩阵。
[ ∣ 1 0 0 4 5 − − − 0 0 0 ∣ 4 5 − − 0 0 0 0 0 0 0 0 0 0 ] \begin{bmatrix}\color{red}{|}\color{black}{1}&0&0&4&5\\\color{red}{-}&\color{red}{-}&\color{red}{-}&&\\0&0&0&\color{red}{|}\color{black}{4}&5\\&&&\color{red}{-}&\color{red}{-}\\0&0&0&0&0\\0&0&0&0&0\end{bmatrix} ∣1−0000−0000−0004