4.8 行满秩方程
高斯约当消元法还可以应用于行满秩矩阵,行满秩矩阵进行高斯约当消元法,最终矩阵变为单位矩阵和自由矩阵。例如方程
2 x + 4 y + 6 z = 12 4 x + 9 y + 13 z = 36 2x + 4y + 6z = 12 \\ 4x + 9y + 13z= 36 2x+4y+6z=124x+9y+13z=36
系数矩阵为
A
=
[
2
4
6
4
9
13
]
A= \left[ \begin{matrix} 2 & 4 & 6\\ 4 & 9 & 13 \end{matrix} \right]
A=[2449613]
是行满秩矩阵。
方程有 3 3 3 个未知数,但是只有 2 2 2 个方程,有无穷多解。
增广矩阵进行高斯消元法
[ 2 4 6 12 4 9 13 36 ] ⇒ [ 2 4 6 12 0 1 1 12 ] \left[ \begin{matrix} 2 & 4 & 6 & 12\\ 4 & 9 & 13 & 36 \end{matrix} \right] \Rightarrow \left[ \begin{matrix} 2 & 4 & 6 & 12\\ 0 & 1 & 1 & 12 \end{matrix} \right] [24496131236]⇒[2041611212]
方程变为
2
x
+
4
y
+
6
z
=
12
y
+
z
=
12
2x + 4y + 6z = 12 \\ y + z = 12
2x+4y+6z=12y+z=12
未知数
z
z
z 是自由变量,可取任意实数,方程解可以表示为
x
=
−
18
−
z
y
=
12
−
z
z
=
0
+
z
x = -18 - z \\ y = 12 - z \\ z = 0 + z
x=−18−zy=12−zz=0+z
写成向量形式
[ x y z ] = [ − 18 12 0 ] + z [ − 1 − 1 1 ] \left[ \begin{matrix} x \\ y \\ z \end{matrix} \right]= \left[ \begin{matrix} -18 \\ 12 \\ 0 \end{matrix} \right]+ z\left[ \begin{matrix} -1 \\ -1 \\ 1 \end{matrix} \right] ⎣⎡xyz⎦⎤=⎣⎡−18120⎦⎤+z⎣⎡−1−11⎦⎤
z z z 取任意实数。
这是只有一个自由变量的情况,如果有多个呢?举例说明。
2
x
+
4
y
+
6
z
+
w
=
12
4
x
+
9
y
+
13
z
+
4
w
=
36
2x + 4y + 6z + w = 12 \\ 4x + 9y + 13z + 4w = 36
2x+4y+6z+w=124x+9y+13z+4w=36
系数矩阵为
A
=
[
2
4
6
1
4
9
13
4
]
A= \left[ \begin{matrix} 2 & 4 & 6 & 1\\ 4 & 9 & 13 & 4 \end{matrix} \right]
A=[244961314]
是行满秩矩阵。
方程有 4 4 4 个未知数,但是只有 2 2 2 个方程,有无穷多解。
增广矩阵进行高斯消元法
[ 2 4 6 1 12 4 9 13 4 36 ] ⇒ [ 2 4 6 1 12 0 1 1 2 12 ] \left[ \begin{matrix} 2 & 4 & 6 & 1 & 12\\ 4 & 9 & 13 & 4 & 36 \end{matrix} \right] \Rightarrow \left[ \begin{matrix} 2 & 4 & 6 & 1 & 12\\ 0 & 1 & 1 & 2 & 12 \end{matrix} \right] [2449613141236]⇒[204161121212]
方程变为
2
x
+
4
y
+
6
z
+
w
=
12
y
+
z
+
2
w
=
12
2x + 4y + 6z + w = 12 \\ y + z + 2w= 12
2x+4y+6z+w=12y+z+2w=12
未知数
z
,
w
z,w
z,w 是自由变量,可取任意实数,方程解可以表示为
x
=
−
18
−
z
−
w
y
=
12
−
z
−
2
w
z
=
0
+
z
+
0
w
w
=
0
+
0
z
+
w
x = -18 - z - w \\ y = 12 - z - 2w \\ z = 0 + z + 0w \\ w = 0 + 0z + w
x=−18−z−wy=12−z−2wz=0+z+0ww=0+0z+w
写成向量形式
[ x y z w ] = [ − 18 12 0 0 ] + z [ − 1 − 1 1 0 ] + w [ − 1 − 2 0 1 ] \left[ \begin{matrix} x \\ y \\ z \\ w \end{matrix} \right]= \left[ \begin{matrix} -18 \\ 12 \\ 0 \\ 0 \end{matrix} \right]+ z\left[ \begin{matrix} -1 \\ -1 \\ 1 \\ 0 \end{matrix} \right]+ w\left[ \begin{matrix} -1 \\ -2 \\ 0 \\ 1 \end{matrix} \right] ⎣⎢⎢⎡xyzw⎦⎥⎥⎤=⎣⎢⎢⎡−181200⎦⎥⎥⎤+z⎣⎢⎢⎡−1−110⎦⎥⎥⎤+w⎣⎢⎢⎡−1−201⎦⎥⎥⎤
z , w z,w z,w 取任意实数。
有几点需要说明,第 1 1 1 点,自由变量不一定非取 z , w z,w z,w ,有多种取法,比如可取 y , w y,w y,w 。
方程为
2 x + 4 y + 6 z + w = 12 y + z + 2 w = 12 2x + 4y + 6z + w = 12 \\ y + z + 2w= 12 2x+4y+6z+w=12y+z+2w=12
未知数
y
,
w
y,w
y,w 是自由变量,可取任意实数,方程解可以表示为
x
=
−
60
+
2
y
+
11
w
z
=
12
−
y
−
2
w
y
=
0
+
y
+
0
w
w
=
0
+
0
y
+
w
x = -60 + 2y + 11w \\ z = 12 - y - 2w \\ y = 0 + y + 0w \\ w = 0 + 0y + w
x=−60+2y+11wz=12−y−2wy=0+y+0ww=0+0y+w
写成向量形式
[ x z y w ] = [ − 60 12 0 0 ] + y [ 2 − 1 1 0 ] + w [ 11 − 2 0 1 ] \left[ \begin{matrix} x \\ z \\ y \\ w \end{matrix} \right]= \left[ \begin{matrix} -60 \\ 12 \\ 0 \\ 0 \end{matrix} \right]+ y\left[ \begin{matrix} 2 \\ -1 \\ 1 \\ 0 \end{matrix} \right]+ w\left[ \begin{matrix} 11 \\ -2 \\ 0 \\ 1 \end{matrix} \right] ⎣⎢⎢⎡xzyw⎦⎥⎥⎤=⎣⎢⎢⎡−601200⎦⎥⎥⎤+y⎣⎢⎢⎡2−110⎦⎥⎥⎤+w⎣⎢⎢⎡11−201⎦⎥⎥⎤
y , w y,w y,w 取任意实数。
这两组解的形式虽然差别很大,但其实都是方程的解。
第 2 2 2 点,自由变量虽然有多种取法,但自由变量的数量是固定的,为 n − m n-m n−m ,是矩阵 A A A 零空间的维度。
第 3 3 3 点,向量 [ 2 − 1 1 0 ] \left[ \begin{matrix} 2 \\ -1 \\ 1 \\ 0 \end{matrix} \right] ⎣⎢⎢⎡2−110⎦⎥⎥⎤ 和向量 [ 11 − 2 0 1 ] \left[ \begin{matrix} 11 \\ -2 \\ 0 \\ 1 \end{matrix} \right] ⎣⎢⎢⎡11−201⎦⎥⎥⎤ 是方程 A x = 0 A\mathbf{x} = \mathbf{0} Ax=0 解,称为零解,它们线性组合构成矩阵 A A A 零空间。一般来说,每个零解中自由变量组均取单位向量 e i \mathbf{e}_i ei ,即只有一个自由变量取 1 1 1 ,其它均为 0 0 0 ,这样计算比较方便。
第 4 4 4 点,向量 [ − 60 12 0 0 ] \left[ \begin{matrix} -60 \\ 12 \\ 0 \\ 0 \end{matrix} \right] ⎣⎢⎢⎡−601200⎦⎥⎥⎤ 是方程 A x = b A\mathbf{x} = \mathbf{b} Ax=b 解,称为特解。一般来说,特解中自由变量均取 0 0 0 ,这样计算比较方便,当然也可取任意值。
所以行满秩方程解的结构为:特解 + + + 零解的线性组合。
第 5 5 5 点,非自由变量对应的列向量,是矩阵列空间的基。本例中, [ 2 4 4 9 ] \left[ \begin{matrix} 2 & 4 \\ 4 & 9 \end{matrix} \right] [2449] 这两个列向量是列空间的基。由于自由变量有多种取法,故基也有多种。
前面都是非自由变量对应的列向量在矩阵的最前列,即最前面的上三角阵是可逆的,但有时不可逆。例如方程
2 x + y + 3 z + 2 w = 5 4 x + 2 y + 7 z + 5 w = 12 2x + y + 3z + 2w = 5 \\ 4x + 2y + 7z + 5w = 12 2x+y+3z+2w=54x+2y+7z+5w=12
增广矩阵进行高斯消元法
[ 2 1 3 2 5 4 2 7 5 12 ] ⇒ [ 2 1 3 2 5 0 0 1 1 2 ] \left[ \begin{matrix} 2 & 1 & 3 & 2 & 5\\ 4 & 2 & 7 & 5 & 12 \end{matrix} \right] \Rightarrow \left[ \begin{matrix} 2 & 1 & 3 & 2 & 5\\ 0 & 0 & 1 & 1 & 2 \end{matrix} \right] [24123725512]⇒[2010312152]
前面两列是矩阵
[
2
1
0
0
]
\left[ \begin{matrix} 2 & 1 \\ 0 & 0 \end{matrix} \right]
[2010]
对角元素有 0 0 0 ,上三角阵不可逆。对应方程为
2 x + y + 3 z + 2 w = 5 0 x + 0 y + z + w = 2 2x + y + 3z + 2w = 5 \\ 0x + 0y + z + w = 2 2x+y+3z+2w=50x+0y+z+w=2
那怎么选非自由变量呢?我们把非自由变量称为主元。每行选一个,从左到右选首个非零元素对应的变量为主元。第一行首个非零元素是
2
2
2 ,对于主元是
x
x
x ,第二行首个非零元素是
1
1
1 ,对于主元是
z
z
z ;则自由变量就是
y
,
w
y,w
y,w ,可取任意实数,方程解可以表示为
x
=
−
1
−
y
+
w
z
=
2
−
0
y
−
w
y
=
0
+
y
+
0
w
w
=
0
+
0
y
+
w
x = -1 - y + w \\ z = 2 - 0y - w \\ y = 0 + y + 0w \\ w = 0 + 0y + w
x=−1−y+wz=2−0y−wy=0+y+0ww=0+0y+w
写成向量形式
[ x z y w ] = [ − 1 2 0 0 ] + y [ − 1 0 1 0 ] + w [ 1 − 1 0 1 ] \left[ \begin{matrix} x \\ z \\ y \\ w \end{matrix} \right]= \left[ \begin{matrix} -1 \\ 2 \\ 0 \\ 0 \end{matrix} \right]+ y\left[ \begin{matrix} -1 \\ 0 \\ 1 \\ 0 \end{matrix} \right]+ w\left[ \begin{matrix} 1 \\ -1 \\ 0 \\ 1 \end{matrix} \right] ⎣⎢⎢⎡xzyw⎦⎥⎥⎤=⎣⎢⎢⎡−1200⎦⎥⎥⎤+y⎣⎢⎢⎡−1010⎦⎥⎥⎤+w⎣⎢⎢⎡1−101⎦⎥⎥⎤
y , w y,w y,w 取任意实数。
矩阵 A A A 经过高斯消元变换为 [ 2 1 3 2 0 0 1 1 ] \left[ \begin{matrix} 2 & 1 & 3 & 2 \\ 0 & 0 & 1 & 1 \end{matrix} \right] [20103121] ,但我们希望前两列向量是上三角阵,这样更有利于理论分析和对比。这可通过列对调操作实现,即对调 2 , 3 2,3 2,3 列向量,则前两列向量是上三角阵。列对调操作类似行对调操作,可以通过置换矩阵实现,差别在于:行对调是左乘,列对调是右乘,即 P i j A P_{ij}A PijA 对调矩阵 i , j i,j i,j 两行, A P i j AP_{ij} APij 对调矩阵 i , j i,j i,j 两列。
总结如下,行满秩矩阵 A m n A_{mn} Amn,高斯消元法变换为 [ U m m , F m , n − m ] \left[ \begin{matrix} U_{mm} , F_{m,n-m} \end{matrix} \right] [Umm,Fm,n−m] , U m m U_{mm} Umm 是 m m m 阶上三角阵,其对角元素是矩阵 A A A 的主元, F m , n − m F_{m,n-m} Fm,n−m 是自由矩阵。用矩阵乘法表示为 L m m A = [ U m m , F m , n − m ] L_{mm}A = \left[ \begin{matrix} U_{mm} , F_{m,n-m} \end{matrix} \right] LmmA=[Umm,Fm,n−m] , L m m L_{mm} Lmm 是 m m m 阶单位下三角阵。上三角阵对应的变量是主元,自由矩阵对应的变量是自由变量。方程解结构为:特解加零解。如有必要,需进行列对调。矩阵乘法表示,即对任意行满秩矩阵 A A A ,存在可逆矩阵 P , Q P,Q P,Q ,使 P A Q = [ U m m , F m , n − m ] PAQ=\left[ \begin{matrix} U_{mm} , F_{m,n-m} \end{matrix} \right] PAQ=[Umm,Fm,n−m] 成立,进一步对 U m m U_{mm} Umm 进行高斯约当消元,则可表示为,存在可逆矩阵 P , Q P,Q P,Q ,使 P A Q = [ E m m , F m , n − m ] PAQ=\left[ \begin{matrix} E_{mm} , F_{m,n-m} \end{matrix} \right] PAQ=[Emm,Fm,n−m] 成立。
前面章节介绍了,行满秩矩阵的列向量组是相关组,其极大无关组是 m m m 维空间的基。利用高斯消元法可以找到行满秩矩阵的极大无关组,主元对应的列向量即是极大无关组。