MacOS(M1芯片 arm架构)下如何安装PyTorch

由于M1芯片下不支持Anaconda,因此有包管理工具miniforge进行替代,miniforge相关的安装过程参考我的另一篇博客https://blog.csdn.net/qq_44174803/article/details/123922390?spm=1001.2014.3001.5502

1.创建pytorch虚拟环境

在安装好miniforge之后,可以在命令行中输入conda --version来确定是否安装成功,如果安装成功后则会返回一个版本号。之后使用以下命令创建pytorch环境

conda create -n 虚拟环境名称 python=版本号
conda create -n pytorch_envs python=3.8

注意,此处建议创建python为3.8的虚拟环境(不标明python版本号的话会自动创建3.9的版本),因为后续可能会有一些库并不支持python3.9的版本。
在这里插入图片描述

2.切换到新的环境

使用下面命令切换创建好的环境pytorch_envs,该环境是一个文件夹,存在~miniforge3/envs文件夹下。

conda activate pytorch_envs 

3.安装pytorch

使用下面命令安装pytorch(实际上就是在切换后的文件夹pytorch_envs下进行下载)

conda install pytorch torchvision -c pytorch

在这里插入图片描述

4.测试

在命令行中输入python打开python解释器后,若输入import torch后命令行不报错即代表安装成功。相关导入PyCharm的操作参考文章前面的链接。
在这里插入图片描述

5.在pytorch环境下安装jupyter notebook

下面选择其一即可,其内部包含了jupyter notebook

conda install nb_conda_kernels      # python3.9版本
conda install nb_conda              # python小于3.9的版本

6.让jupyter在pytorch环境下运行

首先打开终端,输入下面命令

conda activate pytorch_envs

激活包含pytorch的环境,pytorch_envs是当初创建虚拟环境的名称
然后在pytorch_envs虚拟环境下输入jupyter notebook然后打开jupyter notebook即可
当出现下图状况时,则代表导入pytorch成功
在这里插入图片描述
如果需要导入tensorflow环境也是如此,先激活tensorflow的虚拟环境,然后在此虚拟环境下运行jupyter notebook,这样就能在jupyter中导入tensorflow

7 其他注意事项

当出现说numpy版本不匹配的时候,例如下图所示,可以尝试使用下面的方法,先通过conda卸载numpy,然后再安装指定版本的numpy

conda uninstall numpy
conda install numpy==1.18.5

python3.8的话一般可以使用1.18.5的numpy
在这里插入图片描述
使用下面命令可以查看自己当前环境中所安装的包及其版本号

conda list
pip list

使用下面命令可以查看自己当前环境中pip和python的来源路径

which python
which pip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值