【机器学习】 Sigmoid函数:机器学习中的关键激活函数


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


Sigmoid函数:机器学习中的关键激活函数

1. 引言

在机器学习和深度学习领域,激活函数扮演着至关重要的角色。它们为神经网络引入非线性,使得网络能够学习复杂的模式。Sigmoid函数是最早被广泛使用的激活函数之一,至今仍在许多应用中发挥重要作用。本文将深入探讨Sigmoid函数的定义、特性、应用以及优缺点。
在这里插入图片描述

2. Sigmoid函数定义

Sigmoid函数,也称为逻辑函数(Logistic Function),是一种常见的S型函数。其数学表达式为:

S ( x ) = 1 1 + e − x S(x) = \frac{1}{1 + e^{-x}} S(x)=1+ex1

其中,e是自然对数的底数,约等于2.71828。

3. Sigmoid函数的图像特性

Sigmoid函数具有以下几个重要的图像特性:

  1. 函数值域在(0, 1)之间
  2. 在原点(0, 0.5)处对称
  3. 在x趋近于正无穷时,y趋近于1;在x趋近于负无穷时,y趋近于0
  4. 函数曲线呈S型,在中间部分近似线性,两端逐渐平缓

4. Sigmoid函数的导数

Sigmoid函数的导数有一个非常优雅的形式,这也是它在早期神经网络中广泛使用的原因之一。Sigmoid函数的导数可以用函数本身表示:

S ′ ( x ) = S ( x ) ( 1 − S ( x ) ) S'(x) = S(x)(1 - S(x)) S(x)=S(x)(1S(x))

证明如下:

S ′ ( x ) = d d x ( 1 1 + e − x ) = e − x ( 1 + e − x ) 2 = 1 1 + e − x ⋅ e − x 1 + e − x = 1 1 + e − x ⋅ ( 1 − 1 1 + e − x ) = S ( x ) ( 1 − S ( x ) )

评论 202
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鑫宝Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值