

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"
文章目录
Sigmoid函数:机器学习中的关键激活函数
1. 引言
在机器学习和深度学习领域,激活函数扮演着至关重要的角色。它们为神经网络引入非线性,使得网络能够学习复杂的模式。Sigmoid函数是最早被广泛使用的激活函数之一,至今仍在许多应用中发挥重要作用。本文将深入探讨Sigmoid函数的定义、特性、应用以及优缺点。
2. Sigmoid函数定义
Sigmoid函数,也称为逻辑函数(Logistic Function),是一种常见的S型函数。其数学表达式为:
S ( x ) = 1 1 + e − x S(x) = \frac{1}{1 + e^{-x}} S(x)=1+e−x1
其中,e是自然对数的底数,约等于2.71828。
3. Sigmoid函数的图像特性
Sigmoid函数具有以下几个重要的图像特性:
- 函数值域在(0, 1)之间
- 在原点(0, 0.5)处对称
- 在x趋近于正无穷时,y趋近于1;在x趋近于负无穷时,y趋近于0
- 函数曲线呈S型,在中间部分近似线性,两端逐渐平缓
4. Sigmoid函数的导数
Sigmoid函数的导数有一个非常优雅的形式,这也是它在早期神经网络中广泛使用的原因之一。Sigmoid函数的导数可以用函数本身表示:
S ′ ( x ) = S ( x ) ( 1 − S ( x ) ) S'(x) = S(x)(1 - S(x)) S′(x)=S(x)(1−S(x))
证明如下:
S ′ ( x ) = d d x ( 1 1 + e − x ) = e − x ( 1 + e − x ) 2 = 1 1 + e − x ⋅ e − x 1 + e − x = 1 1 + e − x ⋅ ( 1 − 1 1 + e − x ) = S ( x ) ( 1 − S ( x ) )