论文复现-基于NSGA-Ⅲ的梯级水电-火电机组多目标优化调度(全代码-约3000行)

该博客分享了一种使用NSGA-Ⅲ优化算法解决多目标梯级水电-火电机组调度问题的方法。优化目标包括降低成本和减少污染。文中提供详细代码,包括主函数Main_hydro_thermal和NSGA_3函数,适用于电力系统研究。
摘要由CSDN通过智能技术生成

论文复现-基于NSGA-Ⅲ的梯级水电-火电机组多目标优化调度

火电是目前我国电网中提供调节能力的主要能源,而随着碳中和目标的提出,势必要降低火电在电网中的分量。梯级水电则是可以替代火电发挥调节作用的能源。基于电网中存在大量火电的背景,梯级水电如何与火电机组耦合调度呢?本代码通过优于NSGA-Ⅱ的NSGA-Ⅲ优化算法实现了梯级水电和火电机组的联合多目标调度

参考文献:
【1】An interactive fuzzy satisfying method based on evolutionary programming technique for multi-objective short-term hydrothermal scheduling. Electric Power Systems Research;
【2】An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost. Energy Conversion and Management.

订阅专栏即可获取全代码,代码较为复杂,调试期间有疑问可私信咨询。
在这里插入图片描述</

尽管NSGA-III是一种有效的多目标优化算法,但它也存在一些不足之处: 1. 高计算开销:NSGA-III的计算开销相对较高,特别是在高维问题和大规模种群中。由于需要进非支配排序、拥挤度距离计算和环境选择等操作,算法的时间复杂度较高,可能导致较长的求解时间。 2. 参数设置敏感性:NSGA-III的性能和结果很大程度上取决于参数的设置。例如,种群大小、交叉概率、变异概率等参数对算法的收敛性和多样性有重要影响。不同问题需要根据其特点进适当的参数调整,这需要经验和实验来确定最佳参数配置。 3. 解集收敛性:尽管NSGA-III可以生成非支配解集,但它并不能保证收敛到真实前沿(Pareto Front)的局最优解。在某些问题中,算法可能会陷入局部最优解,无法找到局最优解。 4. 多样性维持:尽管NSGA-III引入了拥挤度距离来维持多样性,但在某些情况下,仍可能出现解集聚集在某些区域的问题。算法可能无法有效地维持解的均匀分布,导致多样性不足。 5. 处理束问题的能力有限:NSGA-III在处理具有束条件的问题时存在一定的限制。尽管可以通过修正非支配排序和拥挤度距离计算来考虑束,但对于复杂的束问题,算法的性能可能会受到限制。 总体而言,尽管NSGA-III在多目标优化领域表现出色,但仍存在一些改进的空间。研究者们在不断改进算法的性能和效果,以应对不同问题的挑战。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值