【数据集】未来不同情景下预测数据:如人口、土地利用等

本文介绍了基于共享社会经济路径(SSPs)的全球人口和土地利用数据集。包括1/8°分辨率的全球人口基础年和预测网格,以及0.5°分辨率的格栅化人口和GDP场景。此外,还提到了土地利用/覆盖数据,如AIM-SSP/RCP的排放和土地使用数据,涵盖了2005年至2100年的多种情景和物种排放、土地类别信息。所有数据集提供详细的数据介绍和下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

共享社会经济路径(Shared Socioeconomic Pathways, SSPs):在没有气候变化或者气候政策影响下未来社会的可能发展

在这里插入图片描述
以下介绍未来不同共享社会经济路径(Shared Socioeconomic Pathways, SSPs)下各类数据集。

1 人口数据

1.1 Global One-Eighth Degree Population Base Year and Projection Grids Based on the SSPs, v1.01 (2000 – 2100)

J2016-Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways

## 数据指标说明 南信大姜彤教授研究团队发布了5种共享社会经济路径(SSPs)下的人口与经济预估数据库。该数据库包含 2010-2100年中国、“一带一路”区域和全球范围内分年龄、性别和教育水平的人口以及分三次产业的GDP数据数据分辨率为0.5°×0.5°。共享社会经济路径(SSPs)是政府间气候变化专门委员会(IPCC)于2010年推出的描述全球社会经济发展情景的有力工具,该情景在典型浓度路径(RCPs)情景基础上发展而来,用于定量描述气候变化与社会经济发展路径之间的关系,反映未来社会面临的气候变化适应和减缓挑战。 研究团队采用改进的人口-发展-环境(PDE)模型和柯布‒道格拉斯(Cobb-Douglas)模型,通过历史时期生育率、死亡率、迁移率、教育水平等,以及资本存量、全要素生产率、劳动力水平等率定和验证了人口和经济模型参数,在全球SSPs框架下,开展了SSP1~SSP5下2020—2100年中国分城乡的人口和分产业的经济预估,并构建了最新的“一带一路”沿线国家和全球人口和经济预估数据。 为了科学支撑IPCC第五次评估报告、国际耦合模式比较计划第五阶段(CMIP5)和部门间影响模式国际比较计划(ISI-MIP),促进气候变化科学基础、影响和风险、适应和减缓的发展,IPCC第二和第三工作组的科学家于2010年承担了SSPs情景的设计研究。SSPs情景既要反映全球和区域发展现状和未来可能的发展变化,又要反映未来社会面临的气候变化适应和减缓挑战。每一个SSPs情景需要涵盖人口和人力资源、经济发展、生活方式、人类发展、环境与自然资源、政策和体制、技术发展等7个方面内容。SSPs情景设计了可持续发展路径(SSP1)、中间路径(SSP2)、区域竞争路径(SSP3)、不均衡路径(SSP4)、以传统化石燃料为主的路径(SSP5)等5种社会经济发展路径。 人口和经济是SSPs情景设计中最重要的基础,也是最为关键的要素(图1)。人口和经济变化数据可以用来驱动综合评估模型(IAM),模拟和预估与SSPs相关的土地利用、能源和碳排放变化过程和发展趋势。目前,SSPs情景已经广泛用于CMIP6和ISI-MIP 3b等国际计划和2021—2022年发布的IPCC第六次评估报告,以及气候变化对自然、人类和管理系统的影响和关键风险评估,促进了气候变化科学基础、影响、风险、适应和减缓研究。
### 关于SSP-RCP与PLUS的关系或区别的分析 #### 1. **SSP-RCP的概念定义** 共享社会经济路径(Shared Socioeconomic Pathways, SSPs)和典型浓度路径(Representative Concentration Pathways, RCPs)是用于气候变化研究的重要框架。SSPs描述了未来可能的社会经济发展趋势,而RCPs则关注温室气体排放水平及其对大气辐射强迫的影响。两者的结合形成了SSP-RCP情景矩阵,广泛应用于气候模型和影响评估中[^1]。 #### 2. **PLUS的背景介绍** PLUS通常指代的是“Projection Land Use System”,即一种基于空间显式的土地利用变化预测方法。它通过集成多种驱动因子(如人口增长、经济增长、技术进步等),能够实现高分辨率的土地覆盖变化模拟。在某些研究中,PLUS被用来作为工具来支持SSP-RCP情景下的具体应用,尤其是在区域尺度上的土地利用建模方面[^3]。 #### 3. **SSP-RCP与PLUS的区别** - **概念层面** SSP-RCP提供了一套标准化的情景设定,主要用于指导全球范围内的气候科学研究;相比之下,PLUS更侧重于具体的算法设计和技术实现,旨在解决特定区域内复杂的空间动态过程。 - **用途差异** SSP-RCP更多地服务于宏观战略规划,帮助决策者理解不同发展轨迹下潜在的环境后果;而PLUS则是针对实际操作需求开发的技术手段之一,在精细化管理和政策制定过程中发挥重要作用[^2]。 - **实施方式** 使用SSP-RCP时需依赖大量统计数据并借助超级计算机完成大规模数值运算;而对于PLUS而言,则可通过地理信息系统(GIS)软件配合相应插件快速生成可视化成果供相关人员参考。 #### 4. **两者之间的联系** 尽管存在上述显著差别,但在现代信息技术环境下二者并非完全独立而是相辅相成——一方面可以通过调整PLUS内部参数配置使其更好地匹配选定好的SSP-RCP条件从而提高预测精度另一方面也可以反过来利用PLUS产出的数据反向验证和完善原始SSP-RCP假设前提进而形成良性循环促进整个领域向前发展。 ```python import numpy as np from matplotlib import pyplot as plt def plot_ssp_rcp_plus(): years = range(2020, 2101) ssp_data = { 'SSP1-2.6': np.random.rand(len(years)), 'SSP2-4.5': np.random.rand(len(years)) * 1.5, 'SSP5-8.5': np.random.rand(len(years)) * 2 } fig, ax = plt.subplots() for key in ssp_data.keys(): ax.plot(years, ssp_data[key], label=key) plus_adjustment = (ssp_data['SSP1-2.6'] + ssp_data['SSP2-4.5']) / 2 ax.plot(years, plus_adjustment, linestyle='--', color='black', label="PLUS Adjusted") ax.set_title('Comparison of SSP-RCP Scenarios with PLUS Adjustment') ax.legend(loc='upper left') ax.grid(True) plt.show() plot_ssp_rcp_plus() ``` 此代码片段展示了如何在同一图表上比较不同SSP-RCP场景,并加入了一个虚构的PLUS调整曲线以便直观展示其作用效果。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值