索引
- 含有 sin x \sin x sinx或 cos x \cos x cosx的形式
-
- 51. ∫ cos n x d x = 1 n [ cos n − 1 x sin x + ( n − 1 ) ∫ cos n − 2 x d x ] \int_{ {}}^{ {}}{ { {\cos }^{n}}xdx}=\frac{1}{n}\left[ { {\cos }^{n-1}}x\sin x+\left( n-1 \right)\int_{ {}}^{ {}}{ { {\cos }^{n-2}}xdx} \right] ∫cosnxdx=n1[cosn−1xsinx+(n−1)∫cosn−2xdx]
- 52. ∫ x sin x d x = sin x − x cos x + C \int_{ {}}^{ {}}{x\sin xdx}=\sin x-x\cos x+C ∫xsinxdx=sinx−xcosx+C
- 53. ∫ x cos x d x = cos x + x sin x + C \int_{ {}}^{ {}}{x\cos xdx}=\cos x+x\sin x+C ∫xcosxdx=cosx+xsinx+C
- 54. ∫ x n sin x d x = − x n cos x + n ∫ x n − 1 cos x d x \int_{ {}}^{ {}}{ { {x}^{n}}\sin xdx}=-{ {x}^{n}}\cos x+n\int_{ {}}^{ {}}{ { {x}^{n-1}}\cos xdx} ∫xnsinxdx=−xncosx+n∫xn−1cosxdx
- 55. ∫ x n cos x d x = x n sin x − n ∫ x n − 1 sin x d x \int_{ {}}^{ {}}{ { {x}^{n}}\cos xdx}={ {x}^{n}}\sin x-n\int_{ {}}^{ {}}{ { {x}^{n-1}}\sin xdx} ∫xncosxdx=xnsinx−n∫xn−1sinxdx
- 56. ∫ 1 1 ± sin x d x = tan x ∓ sec x + C \int_{ {}}^{ {}}{\frac{1}{1\pm \sin x}dx}=\tan x\mp \sec x+C ∫1±sinx1dx=tanx∓secx+C
- 57. ∫ 1 1 ± cos x d x = − cot x ± csc x + C \int_{ {}}^{ {}}{\frac{1}{1\pm \cos x}dx}=-\cot x\pm \csc x+C ∫1±cosx1dx=−cotx±cscx+C
- 58. ∫ 1 sin x cos x d x = ln ∣ tan x ∣ + C \int_{ {}}^{ {}}{\frac{1}{\sin x\cos x}dx}=\ln \left| \tan x \right|+C ∫sinxcosx1dx=ln∣tanx∣+C
- 含有 tan x , cot x , sec x , csc x \tan x,\cot x,\sec x,\csc x tanx,cotx,secx,cscx的形式
-
- 59. ∫ tan x d x = − ln ∣ cos x ∣ + C \int_{ {}}^{ {}}{\tan xdx}=-\ln \left| \cos x \right|+C ∫tanxdx=−ln∣cosx∣+C
- 60. ∫ cot x d x = ln ∣ sin x ∣ + C \int_{ {}}^{ {}}{\cot xdx}=\ln \left| \sin x \right|+C ∫cotxdx=ln∣sinx∣+C
- 61. ∫ sec x d x = ln ∣ sec x + tan x ∣ + C \int_{ {}}^{ {}}{\sec xdx}=\ln \left| \sec x+\tan x \right|+C ∫secxdx=ln∣secx+tanx∣+C
- 62. ∫ csc x d x = ln ∣ csc x − cot x ∣ + C \int_{ {}}^{ {}}{\csc xdx}=\ln \left| \csc x-\cot x \right|+C ∫cscxdx=ln∣cscx−cotx∣+C
- 63. ∫ tan 2 x d x = − x + tan x + C \int_{ {}}^{ {}}{ { {\tan }^{2}}xdx}=-x+\tan x+C ∫tan2xdx=−x+tanx+C
- 64. ∫ cot 2 x d x = − x − cot x + C \int_{ {}}^{ {}}{ { {\cot }^{2}}xdx}=-x-\cot x+C ∫cot2xdx=−x−cotx+C
- 65. ∫ sec 2 x d x = tan x + C \int_{ {}}^{ {}}{ { {\sec }^{2}}xdx}=\tan x+C ∫sec2xdx=tanx+C
- 66. ∫ csc 2 x d x = − cot x + C \int_{ {}}^{ {}}{ { {\csc }^{2}}xdx}=-\cot x+C ∫csc2xdx=−cotx+C
- 67. ∫ tan n x d x = tan n − 1 x n − 1 − ∫ tan n − 2 d x , n ≠ 1 \int_{ {}}^{ {}}{ { {\tan }^{n}}xdx}=\frac{ { {\tan }^{n-1}}x}{n-1}-\int_{ {}}^{ {}}{ { {\tan }^{n-2}}dx},\text{ }n\ne 1 ∫tannxdx=n−1tann−1x−∫tann−2dx, n=1
- 68. ∫ cot n x d x = − cot n − 1 x n − 1 − ∫ cot n − 2 x d x , n ≠ 1 \int_{ {}}^{ {}}{ { {\cot }^{n}}xdx}=-\frac{ { {\cot }^{n-1}}x}{n-1}-\int_{ {}}^{ {}}{ { {\cot }^{n-2}}xdx},\text{ }n\ne 1 ∫cotnxdx=−n−1cotn−1x−∫cotn−2xdx, n=1
- 69. ∫ sec n x d x = sec n − 2 x tan x n − 1 + n − 2 n − 1 ∫ sec n − 2 x d x , n ≠ 1 \int_{ {}}^{ {}}{ { {\sec }^{n}}xdx}=\frac{ { {\sec }^{n-2}}x\tan x}{n-1}+\frac{n-2}{n-1}\int_{ {}}^{ {}}{ { {\sec }^{n-2}}xdx},\text{ }n\ne 1 ∫secnxdx=n−1secn−2xtanx+n−1n−2∫secn−2xdx, n=1
- 70. ∫ csc n x d x = − csc n − 2 x cot x n − 1 + n − 2 n − 1 ∫ csc n − 2 x d x , n ≠ 1 \int_{ {}}^{ {}}{ { {\csc }^{n}}xdx}=-\frac{ { {\csc }^{n-2}}x\cot x}{n-1}+\frac{n-2}{n-1}\int_{ {}}^{ {}}{ { {\csc }^{n-2}}xdx},\text{ }n\ne 1 ∫cscnxdx=−n−1cscn−2xcotx+n−1n−2∫cscn−2xdx, n=1
含有 sin x \sin x sinx或 cos x \cos x cosx的形式
51. ∫ cos n x d x = 1 n [ cos n − 1 x sin x + ( n − 1 ) ∫ cos n − 2 x d x ] \int_{ {}}^{ {}}{ { {\cos }^{n}}xdx}=\frac{1}{n}\left[ { {\cos }^{n-1}}x\sin x+\left( n-1 \right)\int_{ {}}^{ {}}{ { {\cos }^{n-2}}xdx} \right] ∫cosnxdx=n1[cosn−1xsinx+(n−1)∫cosn−2xdx]
证明:
∫ cos n x d x = ∫ cos n − 1 x d ( sin x ) = sin x cos n − 1 x − ∫ sin x d ( cos n − 1 x ) = sin x cos n − 1 x + ( n − 1 ) ∫ sin 2 x cos n − 2 x d x = sin x cos n − 1 x + ( n − 1 ) ∫ ( 1 − cos 2 x ) cos n − 2 x d x = sin x cos n − 1 x f + ( n − 1 ) ∫ cos n − 2 x d x − ( n − 1 ) ∫ cos n x d x \begin{aligned} & \int_{
{}}^{
{}}{
{
{\cos }^{n}}xdx}=\int_{
{}}^{
{}}{
{
{\cos }^{n-1}}xd\left( \sin x \right)} \\ & =\sin x{
{\cos }^{n-1}}x-\int_{
{}}^{
{}}{\sin xd\left( {
{\cos }^{n-1}}x \right)} \\ & =\sin x{
{\cos }^{n-1}}x+\left( n-1 \right)\int_{
{}}^{
{}}{
{
{\sin }^{2}}x{
{\cos }^{n-2}}xdx} \\ & =\sin x{
{\cos }^{n-1}}x+\left( n-1 \right)\int_{
{}}^{
{}}{\left( 1-{
{\cos }^{2}}x \right){
{\cos }^{n-2}}xdx} \\ & =\sin x{
{\cos }^{n-1}}xf+\left( n-1 \right)\int_{
{}}^{
{}}{
{
{\cos }^{n-2}}xdx}-\left( n-1 \right)\int_{
{}}^{
{}}{
{
{\cos }^{n}}xdx} \\ \end{aligned} ∫cosnxdx=∫cosn−1xd(sinx)=sinxcosn−1x−∫sinxd(cosn−1x)=sinxcosn−1x+(n−1)∫sin2xcosn−2xdx=sinxcosn−1x+(n−1)∫(1−cos2x)cosn−2xdx=sinxcosn−1xf+(n−1)∫cosn−2xdx−(n−1)∫cosnxdx ⇒ ∫ cos n x d x = 1 n [ cos n − 1 x sin x + ( n − 1 ) ∫ cos n − 2 x d x ] \Rightarrow \int_{
{}}^{
{}}{
{
{\cos }^{n}}xdx}=\frac{1}{n}\left[ {
{\cos }^{n-1}}x\sin x+\left( n-1 \right)\int_{
{}}^{
{}}{
{
{\cos }^{n-2}}xdx} \right] ⇒∫cosnxdx=n1[cosn−1xsinx+(n−1)∫cosn−2xdx]
52. ∫ x sin x d x = sin x − x cos x + C \int_{ {}}^{ {}}{x\sin xdx}=\sin x-x\cos x+C ∫xsinxdx=sinx−xcosx+C
证明:
∫ x sin x d x = ∫ x d ( − cos x ) = − x cos x + ∫ cos x d x = sin x − x cos x + C \begin{aligned} & \int_{
{}}^{
{}}{x\sin xdx}=\int_{
{}}^{
{}}{xd\left( -\cos x \right)} \\ & =-x\cos x+\int_{
{}}^{
{}}{\cos xdx} \\ & =\sin x-x\cos x+C \\ \end{aligned} ∫xsinxdx=∫xd(−cosx)=−xcosx+∫cosxdx=sinx−xcosx+C
53. ∫ x cos x d x = cos x + x sin x + C \int_{ {}}^{ {}}{x\cos xdx}=\cos x+x\sin x+C ∫xcosxdx=cosx+xsinx+C
证明:
∫ x cos x d x = ∫ x d ( sin x ) = x sin x − ∫ sin x d x = x sin x + cos x + C \begin{aligned} & \int_{
{}}^{
{}}{x\cos xdx}=\int_{
{}}^{
{}}{xd\left( \sin x \right)} \\ & =x\sin x-\int_{
{}}^{
{}}{\sin xdx} \\ & =x\sin x+\cos x+C \\ \end{aligned} ∫xcosxdx=∫xd(sinx)=xsinx−∫sinxdx=xsinx+cosx+C
54. ∫ x n sin x d x = − x n cos x + n ∫ x n − 1 cos x d x \int_{ {}}^{ {}}{ { {x}^{n}}\sin xdx}=-{ {x}^{n}}\cos x+n\int_{ {}}^{ {}}{ { {x}^{n-1}}\cos xdx} ∫xnsinxdx=−xncosx+n∫xn−1cosxdx
证明:
∫ x n sin x d x = ∫ x n d ( − cos x ) = − x n cos x + ∫ cos x d ( x n ) = − x n cos x + n ∫ x n − 1 cos x d x \begin{aligned} & \int_{
{}}^{
{}}{
{
{x}^{n}}\sin xdx}=\int_{
{}}^{
{}}{
{
{x}^{n}}d\left( -\cos x \right)} \\ & =-{
{x}^{n}}\cos x+\int_{
{}}^{
{}}{\cos xd\left( {
{x}^{n}} \right)} \\ & =-{
{x}^{n}}\cos x+n\int_{
{}}^{
{}}{
{
{x}^{n-1}}\cos xdx} \\ \end{aligned} ∫xnsinxdx=∫xnd(−cosx)=−xncosx+∫cosxd(xn)=−xncosx+n∫xn−1cosxdx
55. ∫ x n cos x d x = x n sin x − n ∫ x n − 1 sin x d x \int_{ {}}^{ {}}{ { {x}^{n}}\cos xdx}={ {x}^{n}}\sin x-n\int_{ {}}^{ {}}{ { {x}^{n-1}}\sin xdx} ∫xncosxdx=xnsinx−n∫xn−1sinxdx
证明:
∫ x n cos x d x = ∫ x n d ( sin x ) = x n sin x − ∫ sin x d ( x n ) = x n sin x − n ∫ x n − 1 sin x d x \begin{aligned} & \int_{
{}}^{
{}}{
{
{x}^{n}}\cos xdx}=\int_{
{}}^{
{}}{
{
{x}^{n}}d\left( \sin x \right)} \\ & ={
{x}^{n}}\sin x-\int_{
{}}^{
{}}{\sin xd\left( {
{x}^{n}} \right)} \\ & ={
{x}^{n}}\sin x-n\int_{
{}}^{
{}}{
{
{x}^{n-1}}\sin xdx} \\ \end{aligned} ∫xncosxdx=∫xnd(sinx)=xnsinx−∫sinxd(xn)=xnsinx−n∫xn−1sinxdx
56. ∫ 1 1 ± sin x d x = tan x ∓ sec x + C \int_{ {}}^{ {}}{\frac{1}{1\pm \sin x}dx}=\tan x\mp \sec x+C ∫1±sinx1dx=tanx∓secx+C
证明:
∫ 1 1 ± sin x d x = ∫ 1 ∓ sin x ( 1 ± sin x ) ( 1 ∓ sin x ) d x = ∫ 1 ∓ sin x cos 2 x d x = ∫ sec 2 x d x ± ∫ 1 cos 2 x d ( cos x ) = tan x ∓ sec x + C \begin{aligned} & \int_{
{}}^{
{}}{\frac{1}{1\pm \sin x}dx}=\int_{
{}}^{
{}}{\frac{1\mp \sin x}{\left( 1\pm \sin x \right)\left( 1\mp \sin x \right)}dx} \\ & =\int_{
{}}^{
{}}{\frac{1\mp \sin x}{
{
{\cos }^{2}}x}dx} \\ & =\int_{
{}}^{
{}}{
{
{\sec }^{2}}xdx}\pm \int_{
{}}^{
{}}{\frac{1}{
{
{\cos }^{2}}x}d\left( \cos x \right)} \\ & =\tan x\mp \sec x+C \\ \end{aligned} ∫1±sinx1dx=∫