100道积分公式证明(51-70)

这篇博客详细证明了51到70道积分公式,涵盖了含有sinx或cosx的形式以及tanx,cotx,secx,cscx的形式,包括转换、积分技巧和应用。" 49383885,5540177,Android 存储技术:数据保存到本地文件系统,"['Android开发', '文件操作', '数据持久化']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

索引

含有 sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx的形式

51. ∫ cos ⁡ n x d x = 1 n [ cos ⁡ n − 1 x sin ⁡ x + ( n − 1 ) ∫ cos ⁡ n − 2 x d x ] \int_{ {}}^{ {}}{ { {\cos }^{n}}xdx}=\frac{1}{n}\left[ { {\cos }^{n-1}}x\sin x+\left( n-1 \right)\int_{ {}}^{ {}}{ { {\cos }^{n-2}}xdx} \right] cosnxdx=n1[cosn1xsinx+(n1)cosn2xdx]

证明:
∫ cos ⁡ n x d x = ∫ cos ⁡ n − 1 x d ( sin ⁡ x ) = sin ⁡ x cos ⁡ n − 1 x − ∫ sin ⁡ x d ( cos ⁡ n − 1 x ) = sin ⁡ x cos ⁡ n − 1 x + ( n − 1 ) ∫ sin ⁡ 2 x cos ⁡ n − 2 x d x = sin ⁡ x cos ⁡ n − 1 x + ( n − 1 ) ∫ ( 1 − cos ⁡ 2 x ) cos ⁡ n − 2 x d x = sin ⁡ x cos ⁡ n − 1 x f + ( n − 1 ) ∫ cos ⁡ n − 2 x d x − ( n − 1 ) ∫ cos ⁡ n x d x \begin{aligned} & \int_{ {}}^{ {}}{ { {\cos }^{n}}xdx}=\int_{ {}}^{ {}}{ { {\cos }^{n-1}}xd\left( \sin x \right)} \\ & =\sin x{ {\cos }^{n-1}}x-\int_{ {}}^{ {}}{\sin xd\left( { {\cos }^{n-1}}x \right)} \\ & =\sin x{ {\cos }^{n-1}}x+\left( n-1 \right)\int_{ {}}^{ {}}{ { {\sin }^{2}}x{ {\cos }^{n-2}}xdx} \\ & =\sin x{ {\cos }^{n-1}}x+\left( n-1 \right)\int_{ {}}^{ {}}{\left( 1-{ {\cos }^{2}}x \right){ {\cos }^{n-2}}xdx} \\ & =\sin x{ {\cos }^{n-1}}xf+\left( n-1 \right)\int_{ {}}^{ {}}{ { {\cos }^{n-2}}xdx}-\left( n-1 \right)\int_{ {}}^{ {}}{ { {\cos }^{n}}xdx} \\ \end{aligned} cosnxdx=cosn1xd(sinx)=sinxcosn1xsinxd(cosn1x)=sinxcosn1x+(n1)sin2xcosn2xdx=sinxcosn1x+(n1)(1cos2x)cosn2xdx=sinxcosn1xf+(n1)cosn2xdx(n1)cosnxdx ⇒ ∫ cos ⁡ n x d x = 1 n [ cos ⁡ n − 1 x sin ⁡ x + ( n − 1 ) ∫ cos ⁡ n − 2 x d x ] \Rightarrow \int_{ {}}^{ {}}{ { {\cos }^{n}}xdx}=\frac{1}{n}\left[ { {\cos }^{n-1}}x\sin x+\left( n-1 \right)\int_{ {}}^{ {}}{ { {\cos }^{n-2}}xdx} \right] cosnxdx=n1[cosn1xsinx+(n1)cosn2xdx]

52. ∫ x sin ⁡ x d x = sin ⁡ x − x cos ⁡ x + C \int_{ {}}^{ {}}{x\sin xdx}=\sin x-x\cos x+C xsinxdx=sinxxcosx+C

证明:
∫ x sin ⁡ x d x = ∫ x d ( − cos ⁡ x ) = − x cos ⁡ x + ∫ cos ⁡ x d x = sin ⁡ x − x cos ⁡ x + C \begin{aligned} & \int_{ {}}^{ {}}{x\sin xdx}=\int_{ {}}^{ {}}{xd\left( -\cos x \right)} \\ & =-x\cos x+\int_{ {}}^{ {}}{\cos xdx} \\ & =\sin x-x\cos x+C \\ \end{aligned} xsinxdx=xd(cosx)=xcosx+cosxdx=sinxxcosx+C

53. ∫ x cos ⁡ x d x = cos ⁡ x + x sin ⁡ x + C \int_{ {}}^{ {}}{x\cos xdx}=\cos x+x\sin x+C xcosxdx=cosx+xsinx+C

证明:
∫ x cos ⁡ x d x = ∫ x d ( sin ⁡ x ) = x sin ⁡ x − ∫ sin ⁡ x d x = x sin ⁡ x + cos ⁡ x + C \begin{aligned} & \int_{ {}}^{ {}}{x\cos xdx}=\int_{ {}}^{ {}}{xd\left( \sin x \right)} \\ & =x\sin x-\int_{ {}}^{ {}}{\sin xdx} \\ & =x\sin x+\cos x+C \\ \end{aligned} xcosxdx=xd(sinx)=xsinxsinxdx=xsinx+cosx+C

54. ∫ x n sin ⁡ x d x = − x n cos ⁡ x + n ∫ x n − 1 cos ⁡ x d x \int_{ {}}^{ {}}{ { {x}^{n}}\sin xdx}=-{ {x}^{n}}\cos x+n\int_{ {}}^{ {}}{ { {x}^{n-1}}\cos xdx} xnsinxdx=xncosx+nxn1cosxdx

证明:
∫ x n sin ⁡ x d x = ∫ x n d ( − cos ⁡ x ) = − x n cos ⁡ x + ∫ cos ⁡ x d ( x n ) = − x n cos ⁡ x + n ∫ x n − 1 cos ⁡ x d x \begin{aligned} & \int_{ {}}^{ {}}{ { {x}^{n}}\sin xdx}=\int_{ {}}^{ {}}{ { {x}^{n}}d\left( -\cos x \right)} \\ & =-{ {x}^{n}}\cos x+\int_{ {}}^{ {}}{\cos xd\left( { {x}^{n}} \right)} \\ & =-{ {x}^{n}}\cos x+n\int_{ {}}^{ {}}{ { {x}^{n-1}}\cos xdx} \\ \end{aligned} xnsinxdx=xnd(cosx)=xncosx+cosxd(xn)=xncosx+nxn1cosxdx

55. ∫ x n cos ⁡ x d x = x n sin ⁡ x − n ∫ x n − 1 sin ⁡ x d x \int_{ {}}^{ {}}{ { {x}^{n}}\cos xdx}={ {x}^{n}}\sin x-n\int_{ {}}^{ {}}{ { {x}^{n-1}}\sin xdx} xncosxdx=xnsinxnxn1sinxdx

证明:
∫ x n cos ⁡ x d x = ∫ x n d ( sin ⁡ x ) = x n sin ⁡ x − ∫ sin ⁡ x d ( x n ) = x n sin ⁡ x − n ∫ x n − 1 sin ⁡ x d x \begin{aligned} & \int_{ {}}^{ {}}{ { {x}^{n}}\cos xdx}=\int_{ {}}^{ {}}{ { {x}^{n}}d\left( \sin x \right)} \\ & ={ {x}^{n}}\sin x-\int_{ {}}^{ {}}{\sin xd\left( { {x}^{n}} \right)} \\ & ={ {x}^{n}}\sin x-n\int_{ {}}^{ {}}{ { {x}^{n-1}}\sin xdx} \\ \end{aligned} xncosxdx=xnd(sinx)=xnsinxsinxd(xn)=xnsinxnxn1sinxdx

56. ∫ 1 1 ± sin ⁡ x d x = tan ⁡ x ∓ sec ⁡ x + C \int_{ {}}^{ {}}{\frac{1}{1\pm \sin x}dx}=\tan x\mp \sec x+C 1±sinx1dx=tanxsecx+C

证明:
∫ 1 1 ± sin ⁡ x d x = ∫ 1 ∓ sin ⁡ x ( 1 ± sin ⁡ x ) ( 1 ∓ sin ⁡ x ) d x = ∫ 1 ∓ sin ⁡ x cos ⁡ 2 x d x = ∫ sec ⁡ 2 x d x ± ∫ 1 cos ⁡ 2 x d ( cos ⁡ x ) = tan ⁡ x ∓ sec ⁡ x + C \begin{aligned} & \int_{ {}}^{ {}}{\frac{1}{1\pm \sin x}dx}=\int_{ {}}^{ {}}{\frac{1\mp \sin x}{\left( 1\pm \sin x \right)\left( 1\mp \sin x \right)}dx} \\ & =\int_{ {}}^{ {}}{\frac{1\mp \sin x}{ { {\cos }^{2}}x}dx} \\ & =\int_{ {}}^{ {}}{ { {\sec }^{2}}xdx}\pm \int_{ {}}^{ {}}{\frac{1}{ { {\cos }^{2}}x}d\left( \cos x \right)} \\ & =\tan x\mp \sec x+C \\ \end{aligned} 1±sinx1dx=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值