索引
- Hw21:证明对于域扩张 L / F , F / K L/F,F/K L/F,F/K,有 [ L : F ] ⋅ [ F : K ] = [ L : K ] \left[ L:F \right]\centerdot \left[ F:K \right]=\left[ L:K \right] [L:F]⋅[F:K]=[L:K]。
- Hw23:证明 Z [ i ] / ⟨ 3 ⟩ \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle Z[i]/⟨3⟩是一个域,找出其特征 p p p,并讨论 Z [ i ] / ⟨ 3 ⟩ \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle Z[i]/⟨3⟩是否是 F p { {\mathbb{F}}_{p}} Fp上的单扩张。
- Hw24: [ Q ( 2 , 3 , 5 ) : Q ] = ? \left[ \mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3},\sqrt[{}]{5} \right):\mathbb{Q} \right]=? [Q(2,3,5):Q]=?
- Hw25:找出 f = ( x 2 − 3 ) ( x 2 − 5 ) ∈ Q [ x ] f=\left( { {x}^{2}}-3 \right)\left( { {x}^{2}}-5 \right)\in \mathbb{Q}\left[ x \right] f=(x2−3)(x2−5)∈Q[x]在 C \mathbb{C} C中的分裂域。
- Hw26:证明 F p ( t ) / F p ( t p ) { {\mathbb{F}}_{p}}\left( t \right)/{ {\mathbb{F}}_{p}}\left( { {t}^{p}} \right) Fp(t)/Fp(tp)不是可分扩张。
- Hw27:证明 C G ( H ) & N G ( H ) < G { {C}_{G}}\left( H \right)\text{ }\And \text{ }{ {N}_{G}}\left( H \right)\text{ }<\text{ }G CG(H) & NG(H) < G,其中 C G ( H ) : = { g ∈ G ∣ g h g − 1 = h , ∀ h ∈ H } { {C}_{G}}\left( H \right):=\left\{ \left. g\in G \right|gh{ {g}^{-1}}=h,\text{ }\forall h\in H \right\} CG(H):={ g∈G∣ghg−1=h, ∀h∈H}, N G ( H ) : = { g ∈ G ∣ g H g − 1 = H } { {N}_{G}}\left( H \right):=\left\{ \left. g\in G \right|gH{ {g}^{-1}}=H \right\} NG(H):={ g∈G∣gHg−1=H}。
- Hw28:证明 C G ( H ) = ⋂ h ∈ H C G ( { h } ) { {C}_{G}}\left( H \right)=\bigcap\limits_{h\in H}^{ {}}{ { {C}_{G}}\left( \left\{ h \right\} \right)} CG(H)=h∈H⋂CG({ h}) .
- Hw29: M , N M,N M,N是两个自由 R - R\text{-} R-模, r a n k ( M ) = r , rank ( N ) = s , rank\left( M \right)=r,\text{ rank}\left( N \right)=s, rank(M)=r, rank(N)=s,证明 M × N M\times N M×N是自由 R - R\text{-} R-模并且有 r a n k ( M × N ) = r + s rank\left( M\times N \right)=r+s rank(M×N)=r+s。
- Hw30:找到 x 7 − 1 ∈ Q [ x ] { {x}^{7}}-1\in \mathbb{Q}\left[ x \right] x7−1∈Q[x]的一个galois群。
Hw21:证明对于域扩张 L / F , F / K L/F,F/K L/F,F/K,有 [ L : F ] ⋅ [ F : K ] = [ L : K ] \left[ L:F \right]\centerdot \left[ F:K \right]=\left[ L:K \right] [L:F]⋅[F:K]=[L:K]。
证明:
Let m = [ L : F ] , n = [ F : K ] m=\left[ L:F \right],\text{ }n=\left[ F:K \right] m=[L:F], n=[F:K], then
- ∃ [ l 1 , l 2 , . . . , l m ] , l i ∈ L , i = 1 , 2 , . . . , m \exists \left[ {
{l}_{1}},{
{l}_{2}},...,{
{l}_{m}} \right],{
{l}_{i}}\in L,\text{ }i=1,2,...,m ∃[l1,l2,...,lm],li∈L, i=1,2,...,m, s.t. ∀ l ∈ L , ∃ g 1 j , g 2 j , . . . , g m j ∈ F \forall l\in L,\text{ }\exists {
{g}_{1j}},{
{g}_{2j}},...,{
{g}_{mj}}\in F ∀l∈L, ∃g1j,g2j,...,gmj∈F,
l = ∑ i = 1 m g i j l i . l=\sum\limits_{i=1}^{m}{ { {g}_{ij}}{ {l}_{i}}}. l=i=1∑mgijli. - ∃ [ f 1 , f 2 , . . . , f n ] , f j ∈ F , j = 1 , 2 , . . . , n \exists \left[ {
{f}_{1}},{
{f}_{2}},...,{
{f}_{n}} \right],\text{ }{
{f}_{j}}\in F,\text{ }j=1,2,...,n ∃[f1,f2,...,fn], fj∈F, j=1,2,...,n, s.t. ∀ g i j ∈ F , ∃ k i 1 , k i 2 , . . . , k i n ∈ K \forall {
{g}_{ij}}\in F,\text{ }\exists {
{k}_{i1}},{
{k}_{i2}},...,{
{k}_{in}}\in K ∀gij∈F, ∃ki1,ki2,...,kin∈K,
g i j = ∑ j = 1 n k i j f j . { {g}_{ij}}=\sum\limits_{j=1}^{n}{ { {k}_{ij}}{ {f}_{j}}}. gij=j=1∑nkijfj.
So we have ∀ l ∈ L \forall l\in L ∀l∈L,
l = ∑ i = 1 m ∑ j = 1 n k i j ( l i f j ) . l=\sum\limits_{i=1}^{m}{\sum\limits_{j=1}^{n}{ { {k}_{ij}}\left( { {l}_{i}}{ {f}_{j}} \right)}}. l=i=1∑mj=1∑nkij(lifj).
L L L is a field extension of F F F ⇒ F ⊆ L \Rightarrow F\subseteq L ⇒F⊆L ⇒ f j ∈ L , l i f j ∈ L \Rightarrow { {f}_{j}}\in L,\text{ }{ {l}_{i}}{ {f}_{j}}\in L ⇒fj∈L, lifj∈L.
Next we only need to prove that { l i f j } \left\{ { {l}_{i}}{ {f}_{j}} \right\} { lifj} is linearly independent.
l = ∑ i = 1 m g i j l i = 0 ⇔ ∀ i ∈ { 1 , 2 , . . . , m } , g i j = 0 l=\sum\limits_{i=1}^{m}{ { {g}_{ij}}{ {l}_{i}}}=0\text{ }\Leftrightarrow \text{ }\forall i\in \left\{ 1,2,...,m \right\},\text{ }{ {g}_{ij}}=0 l=i=1∑mgijli=0 ⇔ ∀i∈{ 1,2,...,m}, gij=0
g i j = ∑ j = 1 n k i j f j = 0 ⇔ ∀ j ∈ { 1 , 2 , . . . , n } , k i j = 0. { {g}_{ij}}=\sum\limits_{j=1}^{n}{ { {k}_{ij}}{ {f}_{j}}}=0\text{ }\Leftrightarrow \text{ }\forall j\in \left\{ 1,2,...,n \right\},\text{ }{ {k}_{ij}}=0. gij=j=1∑nkijfj=0 ⇔ ∀j∈{ 1,2,...,n}, kij=0.
So we have
l = ∑ i = 1 m ∑ j = 1 n k i j ( l i f j ) = 0 ⇔ ∀ i , j , k i j = 0. l=\sum\limits_{i=1}^{m}{\sum\limits_{j=1}^{n}{ { {k}_{ij}}\left( { {l}_{i}}{ {f}_{j}} \right)}}=0\text{ }\Leftrightarrow \text{ }\forall i,j,\text{ }{ {k}_{ij}}=0. l=i=1∑mj=1∑nkij(lifj)=0 ⇔ ∀i,j, kij=0.
So [ L : K ] = ∣ { l i f j } ∣ = m ⋅ n = [ L : F ] ⋅ [ F : K ] \left[ L:K \right]=\left| \left\{ { {l}_{i}}{ {f}_{j}} \right\} \right|=m\centerdot n=\left[ L:F \right]\centerdot \left[ F:K \right] [L:K]=∣{ lifj}∣=m⋅n=[L:F]⋅[F:K].
Hw23:证明 Z [ i ] / ⟨ 3 ⟩ \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle Z[i]/⟨3⟩是一个域,找出其特征 p p p,并讨论 Z [ i ] / ⟨ 3 ⟩ \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle Z[i]/⟨3⟩是否是 F p { {\mathbb{F}}_{p}} Fp上的单扩张。
解:
将 ⟨ 3 ⟩ \left\langle 3 \right\rangle ⟨3⟩视为 Z [ i ] \mathbb{Z}\left[ i \right] Z[i]的由 3 ∈ Z [ i ] 3\in \mathbb{Z}\left[ i \right] 3∈Z[i]生成的主理想。由于 Z [ i ] \mathbb{Z}\left[ i \right] Z[i]是含幺交换环,因此有 ⟨ 3 ⟩ = 3 Z [ i ] = { 3 a + 3 b i ∣ a , b ∈ Z } . \left\langle 3 \right\rangle =3\mathbb{Z}\left[ i \right]=\left\{ \left. 3a+3bi \right|a,b\in \mathbb{Z} \right\}. ⟨3⟩=3Z[i]={
3a+3bi∣a,b∈Z}.
显然地有 Z [ i ] / ⟨ 3 ⟩ \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle Z[i]/⟨3⟩是一个交换商环,其结构为
Z [ i ] / ⟨ 3 ⟩ = { ( 0 ‾ , 0 ‾ ) , ( 0 ‾ , 1 ‾ ) , ( 0 ‾ , 2 ‾ ) , ( 1 ‾ , 0 ‾ ) , ( 1 ‾ , 1 ‾ ) , ( 1 ‾ , 2 ‾ ) , ( 2 ‾ , 0 ‾ ) , ( 2 ‾ , 1 ‾ ) , ( 2 ‾ , 2 ‾ ) } \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle =\left\{ \left( \overline{0},\overline{0} \right),\left( \overline{0},\overline{1} \right),\left( \overline{0},\overline{2} \right),\left( \overline{1},\overline{0} \right),\left( \overline{1},\overline{1} \right),\left( \overline{1},\overline{2} \right),\left( \overline{2},\overline{0} \right),\left( \overline{2},\overline{1} \right),\left( \overline{2},\overline{2} \right) \right\} Z[i]/⟨3⟩={
(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}
其中 ( a ‾ , b ‾ ) , a , b = 0 , 1 , 2 \left( \overline{a},\overline{b} \right),a,b=0,1,2 (a,b),a,b=0,1,2表示集合 { k 1 + k 2 i ∈ Z [ i ] ∣ k 1 ≡ a ( m o d 3 ) , k 2 ≡ b ( m o d 3 ) } \left\{ \left. {
{k}_{1}}+{
{k}_{2}}i\in \mathbb{Z}\left[ i \right] \right|{
{k}_{1}}\equiv a\left( \bmod 3 \right),\text{ }{
{k}_{2}}\equiv b\left( \bmod 3 \right) \right\} {
k1+k2i∈Z[i]∣k1