抽象代数练习(III)

本文详尽解答了一系列关于域扩张和抽象代数的习题,包括证明[L:F]⋅[F:K]=[L:K],探讨Z[i]/⟨3⟩作为域的性质,以及Q(2,3,5)与Q的关系,同时涉及多项式在复数域中的分裂域,Fp(t)/Fp(tp)的可分性,群论中与正规子群和共轭子群相关的定理,以及自由模的秩等概念。" 131238868,7144079,Python实现睡眠分析的聚类方法,"['机器学习', '数据分析', 'Python', '数据挖掘', 'K-Means']
摘要由CSDN通过智能技术生成

索引

Hw21:证明对于域扩张 L / F , F / K L/F,F/K L/F,F/K,有 [ L : F ] ⋅ [ F : K ] = [ L : K ] \left[ L:F \right]\centerdot \left[ F:K \right]=\left[ L:K \right] [L:F][F:K]=[L:K]

证明:
Let m = [ L : F ] ,   n = [ F : K ] m=\left[ L:F \right],\text{ }n=\left[ F:K \right] m=[L:F], n=[F:K], then

  1. ∃ [ l 1 , l 2 , . . . , l m ] , l i ∈ L ,   i = 1 , 2 , . . . , m \exists \left[ { {l}_{1}},{ {l}_{2}},...,{ {l}_{m}} \right],{ {l}_{i}}\in L,\text{ }i=1,2,...,m [l1,l2,...,lm],liL, i=1,2,...,m, s.t. ∀ l ∈ L ,   ∃ g 1 j , g 2 j , . . . , g m j ∈ F \forall l\in L,\text{ }\exists { {g}_{1j}},{ {g}_{2j}},...,{ {g}_{mj}}\in F lL, g1j,g2j,...,gmjF,
    l = ∑ i = 1 m g i j l i . l=\sum\limits_{i=1}^{m}{ { {g}_{ij}}{ {l}_{i}}}. l=i=1mgijli.
  2. ∃ [ f 1 , f 2 , . . . , f n ] ,   f j ∈ F ,   j = 1 , 2 , . . . , n \exists \left[ { {f}_{1}},{ {f}_{2}},...,{ {f}_{n}} \right],\text{ }{ {f}_{j}}\in F,\text{ }j=1,2,...,n [f1,f2,...,fn], fjF, j=1,2,...,n, s.t. ∀ g i j ∈ F ,   ∃ k i 1 , k i 2 , . . . , k i n ∈ K \forall { {g}_{ij}}\in F,\text{ }\exists { {k}_{i1}},{ {k}_{i2}},...,{ {k}_{in}}\in K gijF, ki1,ki2,...,kinK,
    g i j = ∑ j = 1 n k i j f j . { {g}_{ij}}=\sum\limits_{j=1}^{n}{ { {k}_{ij}}{ {f}_{j}}}. gij=j=1nkijfj.
    So we have ∀ l ∈ L \forall l\in L lL,
    l = ∑ i = 1 m ∑ j = 1 n k i j ( l i f j ) . l=\sum\limits_{i=1}^{m}{\sum\limits_{j=1}^{n}{ { {k}_{ij}}\left( { {l}_{i}}{ {f}_{j}} \right)}}. l=i=1mj=1nkij(lifj).
    L L L is a field extension of F F F ⇒ F ⊆ L \Rightarrow F\subseteq L FL ⇒ f j ∈ L ,   l i f j ∈ L \Rightarrow { {f}_{j}}\in L,\text{ }{ {l}_{i}}{ {f}_{j}}\in L fjL, lifjL.
    Next we only need to prove that { l i f j } \left\{ { {l}_{i}}{ {f}_{j}} \right\} { lifj} is linearly independent.
    l = ∑ i = 1 m g i j l i = 0   ⇔   ∀ i ∈ { 1 , 2 , . . . , m } ,   g i j = 0 l=\sum\limits_{i=1}^{m}{ { {g}_{ij}}{ {l}_{i}}}=0\text{ }\Leftrightarrow \text{ }\forall i\in \left\{ 1,2,...,m \right\},\text{ }{ {g}_{ij}}=0 l=i=1mgijli=0  i{ 1,2,...,m}, gij=0
    g i j = ∑ j = 1 n k i j f j = 0   ⇔   ∀ j ∈ { 1 , 2 , . . . , n } ,   k i j = 0. { {g}_{ij}}=\sum\limits_{j=1}^{n}{ { {k}_{ij}}{ {f}_{j}}}=0\text{ }\Leftrightarrow \text{ }\forall j\in \left\{ 1,2,...,n \right\},\text{ }{ {k}_{ij}}=0. gij=j=1nkijfj=0  j{ 1,2,...,n}, kij=0.
    So we have
    l = ∑ i = 1 m ∑ j = 1 n k i j ( l i f j ) = 0   ⇔   ∀ i , j ,   k i j = 0. l=\sum\limits_{i=1}^{m}{\sum\limits_{j=1}^{n}{ { {k}_{ij}}\left( { {l}_{i}}{ {f}_{j}} \right)}}=0\text{ }\Leftrightarrow \text{ }\forall i,j,\text{ }{ {k}_{ij}}=0. l=i=1mj=1nkij(lifj)=0  i,j, kij=0.
    So [ L : K ] = ∣ { l i f j } ∣ = m ⋅ n = [ L : F ] ⋅ [ F : K ] \left[ L:K \right]=\left| \left\{ { {l}_{i}}{ {f}_{j}} \right\} \right|=m\centerdot n=\left[ L:F \right]\centerdot \left[ F:K \right] [L:K]={ lifj}=mn=[L:F][F:K].

Hw23:证明 Z [ i ] / ⟨ 3 ⟩ \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle Z[i]/3是一个域,找出其特征 p p p,并讨论 Z [ i ] / ⟨ 3 ⟩ \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle Z[i]/3是否是 F p { {\mathbb{F}}_{p}} Fp上的单扩张。

解:
⟨ 3 ⟩ \left\langle 3 \right\rangle 3视为 Z [ i ] \mathbb{Z}\left[ i \right] Z[i]的由 3 ∈ Z [ i ] 3\in \mathbb{Z}\left[ i \right] 3Z[i]生成的主理想。由于 Z [ i ] \mathbb{Z}\left[ i \right] Z[i]是含幺交换环,因此有 ⟨ 3 ⟩ = 3 Z [ i ] = { 3 a + 3 b i ∣ a , b ∈ Z } . \left\langle 3 \right\rangle =3\mathbb{Z}\left[ i \right]=\left\{ \left. 3a+3bi \right|a,b\in \mathbb{Z} \right\}. 3=3Z[i]={ 3a+3bia,bZ}.
显然地有 Z [ i ] / ⟨ 3 ⟩ \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle Z[i]/3是一个交换商环,其结构为
Z [ i ] / ⟨ 3 ⟩ = { ( 0 ‾ , 0 ‾ ) , ( 0 ‾ , 1 ‾ ) , ( 0 ‾ , 2 ‾ ) , ( 1 ‾ , 0 ‾ ) , ( 1 ‾ , 1 ‾ ) , ( 1 ‾ , 2 ‾ ) , ( 2 ‾ , 0 ‾ ) , ( 2 ‾ , 1 ‾ ) , ( 2 ‾ , 2 ‾ ) } \mathbb{Z}\left[ i \right]/\left\langle 3 \right\rangle =\left\{ \left( \overline{0},\overline{0} \right),\left( \overline{0},\overline{1} \right),\left( \overline{0},\overline{2} \right),\left( \overline{1},\overline{0} \right),\left( \overline{1},\overline{1} \right),\left( \overline{1},\overline{2} \right),\left( \overline{2},\overline{0} \right),\left( \overline{2},\overline{1} \right),\left( \overline{2},\overline{2} \right) \right\} Z[i]/3={ (0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}
其中 ( a ‾ , b ‾ ) , a , b = 0 , 1 , 2 \left( \overline{a},\overline{b} \right),a,b=0,1,2 (a,b),a,b=0,1,2表示集合 { k 1 + k 2 i ∈ Z [ i ] ∣ k 1 ≡ a (   m o d   3 ) ,   k 2 ≡ b (   m o d   3 ) } \left\{ \left. { {k}_{1}}+{ {k}_{2}}i\in \mathbb{Z}\left[ i \right] \right|{ {k}_{1}}\equiv a\left( \bmod 3 \right),\text{ }{ {k}_{2}}\equiv b\left( \bmod 3 \right) \right\} { k1+k2iZ[i]k1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值