初等数论 课堂笔记 第二章 -- 费马问题

本文详细分析了费马大定理的扩展形式和特殊形式,包括x^4+y^4=z^2、x^4n+y^4n=z^4n (n>=0)、x^4+4y^4=z^2、x^4-y^4=z^2和x^3+2y^3=4z^3等无正整数解的证明过程,利用反证法和数学归纳法展示了这些方程解的不存在性。
摘要由CSDN通过智能技术生成

费马大定理(FLT): x n + y n = z n ,   n ∈ Z ≥ 3 { {x}^{n}}+{ {y}^{n}}={ {z}^{n}},\text{ }n\in { {\mathbb{Z}}_{\ge 3}} xn+yn=zn, nZ3无正整数解。

相关证明见下面两篇文章。

  1. Andrew Wiles(1995). “Modular elliptic curves and Fermat’s Last Theorem”.
  2. Taylor R, Wiles A(1995). “Ring theoretic properties of certain Hecke algebras”. Annals of Mathematics. 141(3):443-551, 553-572.

以下考虑几种特殊形式和拓展形式。

扩展形式1: x 4 + y 4 = z 2 { {x}^{4}}+{ {y}^{4}}={ {z}^{2}} x4+y4=z2无正整数解。

证明
  若方程有正整数解,由于方程的所有正整数解为离散的且对于 z z z分量存在下界0,因此不妨令 ( x , y , z 0 ) ∈ Z > 0 3 \left( x,y,{ {z}_{0}} \right)\in \mathbb{Z}_{>0}^{3} (x,y,z0)Z>03是方程的正整数解,且 z 0 { {z}_{0}} z0是所有正整数解中 z z z分量最小的。
d = gcd ⁡ ( x , y ) d=\gcd \left( x,y \right) d=gcd(x,y),则有
{ d ∣ x   ⇒   d 4 ∣ x 4 d ∣ y   ⇒   d 4 ∣ y 4   ⇒   d 4 ∣ ( x 4 + y 4 ) = z 0 2   ⇒   d 2 ∣ z 0 ,   z 0 d 2 ∈ Z \left\{ \begin{aligned} & \left. d \right|x\text{ }\Rightarrow \text{ }\left. { {d}^{4}} \right|{ {x}^{4}} \\ & \left. d \right|y\text{ }\Rightarrow \text{ }\left. { {d}^{4}} \right|{ {y}^{4}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left. { {d}^{4}} \right|\left( { {x}^{4}}+{ {y}^{4}} \right)={ {z}_{0}}^{2}\text{ }\Rightarrow \text{ }\left. d^2 \right|{ {z}_{0}},\text{ }\frac{ { {z}_{0}}}{d^2}\in \mathbb{Z} { dx  d4x4dy  d4y4  d4(x4+y4)=z02  d2z0, d2z0Z
因此有
( x d ) 4 + ( y d ) 4 = ( z 0 d 2 ) 2 { {\left( \frac{x}{d} \right)}^{4}}+{ {\left( \frac{y}{d} \right)}^{4}}={ {\left( \frac{ { {z}_{0}}}{ { {d}^{2}}} \right)}^{2}} (dx)4+(dy)4=(d2z0)2
( x d , y d , z 0 d 2 ) ∈ Z > 0 3 \left( \frac{x}{d},\frac{y}{d},\frac{ { {z}_{0}}}{ { {d}^{2}}} \right)\in \mathbb{Z}_{>0}^{3} (dx,dy,d2z0)Z>03也是方程的解。由假设,我们有
{ z 0 d 2 ≥ z 0   ⇒   d ≤ 1 d ≥ 1   ⇒   d = gcd ⁡ ( x , y ) = 1   ⇒   gcd ⁡ ( x 2 , y 2 ) = 1 \left\{ \begin{matrix} \frac{ { {z}_{0}}}{ { {d}^{2}}}\ge { {z}_{0}}\text{ }\Rightarrow \text{ }d\le 1 \\ d\ge 1 \\ \end{matrix} \right.\text{ }\Rightarrow \text{ }d=\gcd \left( x,y \right)=1\text{ }\Rightarrow \text{ }\gcd \left( { {x}^{2}},{ {y}^{2}} \right)=1 { d2z0z0  d1d1  d=gcd(x,y)=1  gcd(x2,y2)=1
根据勾股数一节,方程 ( x 2 ) 2 + ( y 2 ) 2 = z 2 { {\left( { {x}^{2}} \right)}^{2}}+{ {\left( { {y}^{2}} \right)}^{2}}={ {z}^{2}} (x2)2+(y2)2=z2的满足条件 gcd ⁡ ( x 2 , y 2 ) = 1 \gcd \left( { {x}^{2}},{ {y}^{2}} \right)=1 gcd(x2,y2)=1的数组 ( x 2 , y 2 , z 0 ) \left( { {x}^{2}},{ {y}^{2}},{ {z}_{0}} \right) (x2,y2,z0)可以表示为(由勾股数一节 x 2 , y 2 { {x}^{2}},{ {y}^{2}} x2,y2一定是一奇一偶,由 x , y x,y x,y在方程里的对称性,不妨令 x 2 { {x}^{2}} x2为偶数, y 2 { {y}^{2}} y2为奇数)
{ x 2 = 2 a b y 2 = a 2 − b 2 z 0 = a 2 + b 2 ,   ∃ a > b > 0 ,   gcd ⁡ ( a , b ) = 1 ,   a , b 一 奇 一 偶 \left\{ \begin{aligned} & { {x}^{2}}=2ab \\ & { {y}^{2}}={ {a}^{2}}-{ {b}^{2}} \\ & z_0={ {a}^{2}}+{ {b}^{2}} \\ \end{aligned} \right.,\text{ }\exists a>b>0,\text{ }\gcd \left( a,b \right)=1,\text{ }a,b一奇一偶 x2=2aby2=a2b2z0=a2+b2, a>b>0, gcd(a,b)=1, a,b
  若 a a a b b b奇,设 a = 2 x ,   b = 2 y + 1 a=2x,\text{ }b=2y+1 a=2x, b=2y+1,有
{ a 2 − b 2 = ( 2 x ) 2 − ( 2 y + 1 ) 2 = 4 ( x 2 − y 2 − y ) − 1 ≡ 3 (   m o d   4 ) y 2 = ( 2 y 0 + 1 ) 2 = 4 ( y 0 2 + y 0 ) + 1 ≡ 1 (   m o d   4 ) y 2 = a 2 − b 2   ⇒ 矛盾 \left\{ \begin{aligned} & { {a}^{2}}-{ {b}^{2}}={ {\left( 2x \right)}^{2}}-{ {\left( 2y+1 \right)}^{2}}=4\left( { {x}^{2}}-{ {y}^{2}}-y \right)-1\equiv 3\left( \bmod 4 \right) \\ & { {y}^{2}}={ {\left( 2{ {y}_{0}}+1 \right)}^{2}}=4\left( { {y}_{0}}^2+{ {y}_{0}} \right)+1\equiv 1\left( \bmod 4 \right) \\ & \\ & { {y}^{2}}={ {a}^{2}}-{ {b}^{2}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{矛盾} a2b2=(2x)2(2y+1)2=4(x2y2y)13(mod4)y2=(2y0+1)2=4(y02+y0)+11(mod4)y2=a2b2 矛盾
因此 a a a b b b偶。整理目前所得的条件和结论如下。
{ x 2 = 2 a b y 2 = a 2 − b 2 z 0 = a 2 + b 2 ,   ∃ a > b > 0 ,   gcd ⁡ ( a , b ) = 1 ,   a 奇 b 偶 \left\{ \begin{aligned} & { {x}^{2}}=2ab \\ & { {y}^{2}}={ {a}^{2}}-{ {b}^{2}} \\ & z_0={ {a}^{2}}+{ {b}^{2}} \\ \end{aligned} \right.,\text{ }\exists a>b>0,\text{ }\gcd \left( a,b \right)=1,\text{ }a奇b偶 x2=2aby2=a2b2z0=a2+b2, a>b>0, gcd(a,b)=1, ab

  1. b = 2 c ,  c ∈ Z > 0 b=2c,\text{ c}\in { {\mathbb{Z}}_{>0}} b=2c, cZ>0应用条件 x 2 = 2 a b { {x}^{2}}=2ab x2=2ab如下。
    { x 2 = 2 a b = 4 a c   ⇒   a c = ( x 2 ) 2 { gcd ⁡ ( a , b ) = gcd ⁡ ( a , 2 c ) = 1 gcd ⁡ ( a , 2 ) = 1   ⇒   gcd ⁡ ( a , c ) = gcd ⁡ ( a , 2 c ) = 1   ( 引 理 ) ⇒   { a = d 2 c = f 2 x 2 = d f d , f ∈ Z > 0 ,   gcd ⁡ ( d , f ) = 1 \left\{ \begin{aligned} & { {x}^{2}}=2ab=4ac\text{ }\Rightarrow \text{ }ac={ {\left( \frac{x}{2} \right)}^{2}} \\ & \left\{ \begin{aligned} & \gcd \left( a,b \right)=\gcd \left( a,2c \right)=1 \\ & \gcd \left( a,2 \right)=1 \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\gcd \left( a,c \right)=\gcd \left( a,2c \right)=1 \\ \end{aligned} \right.\text{ }\left( 引理 \right)\Rightarrow \text{ }\left\{ \begin{aligned} & a={ {d}^{2}} \\ & c={ {f}^{2}} \\ & \frac{x}{2}=df \\ & d,f\in { {\mathbb{Z}}_{>0}},\text{ }\gcd \left( d,f \right)=1 \\ \end{aligned} \right. x2=2ab=4ac  ac=(2x)2{ gcd(a,b)=gcd(a,2c)=1gcd(a,2)=1  gcd(a,c)=gcd(a,2c)=1 () a=d2c=f22x=dfd,fZ>0, gcd(d,f)=1

  2. 应用条件 y 2 = a 2 − b 2 { {y}^{2}}={ {a}^{2}}-{ {b}^{2}} y2=a2b2如下。
    { gcd ⁡ ( y , b ) ∣ y = ( a 2 − b 2 ) gcd ⁡ ( y , b ) ∣ b   ⇒   gcd ⁡ ( y , b ) ∣ b 2   ⇒   gcd ⁡ ( y , b ) ∣ [ ( a 2 − b 2 ) + b 2 ] = a 2 ⇒ gcd ⁡ ( y , b ) ∣ gcd ⁡ ( a 2 , b 2 ) gcd ⁡ ( a , b ) = 1   ⇒   gcd ⁡ ( a 2 , b 2 ) = 1 }   ⇒   gcd ⁡ ( y , b ) = 1 \begin{aligned} & \left\{ \begin{aligned} & \left. \gcd \left( y,b \right) \right|y=\left( { {a}^{2}}-{ {b}^{2}} \right) \\ & \left. \gcd \left( y,b \right) \right|b\text{ }\Rightarrow \text{ }\left. \gcd \left( y,b \right) \right|{ {b}^{2}} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left. \gcd \left( y,b \right) \right|\left[ \left( { {a}^{2}}-{ {b}^{2}} \right)+{ {b}^{2}} \right]={ {a}^{2}} \\ & \left. \begin{aligned} & \Rightarrow \left. \gcd \left( y,b \right) \right|\gcd \left( { {a}^{2}},{ {b}^{2}} \right) \\ & \gcd \left( a,b \right)=1\text{ }\Rightarrow \text{ }\gcd \left( { {a}^{2}},{ {b}^{2}} \right)=1 \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }\gcd \left( y,b \right)=1 \\ \end{aligned} { gcd(y,b)y=(a2b2)gcd(y,b)b  gcd(y,b)b2  gcd(y,b)[(a2b2)+b2]=a2gcd(y,b)gcd(a2,b2)gcd(a,b)=1  gcd(a2,b2)=1}  gcd(y,b)=1
    y 2 = a 2 − b 2   ⇒   b 2 + y 2 = a 2 gcd ⁡ ( y , b ) = 1   ( 勾 股 数 方 程 解 定 理 且 b 是 偶 数 ) ⇒   { b = 2 l m y = l 2 − m 2 a = l 2 + m 2 gcd ⁡ ( l , m ) = 1 ,   l > m > 0 , l , m 一 奇 一 偶 \begin{matrix} { {y}^{2}}={ {a}^{2}}-{ {b}^{2}}\text{ }\Rightarrow \text{ }{ {b}^{2}}+{ {y}^{2}}={ {a}^{2}} \\ \gcd \left( y,b \right)=1 \\ \end{matrix}\text{ }\left( 勾股数方程解定理且b是偶数 \right)\Rightarrow \text{ }\left\{ \begin{aligned} & b=2lm \\ & y={ {l}^{2}}-{ {m}^{2}} \\ & a={ {l}^{2}}+{ {m}^{2}} \\ & \gcd \left( l,m \right)=1,\text{ }l>m>0, l,m一奇一偶 \\ \end{aligned} \right. y2=a2b2  b2+y2=a2gcd(y,b)=1 (b) b=2lmy=l2m2a=l2+m2gcd(l,m)=1, l>m>0,l,m

  3. 综合运用前2个结论如下。
    2 l m = b = 2 c = 2 f 2   ⇒   l m = f 2   ( 引 理 ) ⇒   { l = r 2 m = s 2 f = r s ,   r , s ∈ Z > 0 ,   gcd ⁡ ( r , s ) = 1 2lm=b=2c=2{ {f}^{2}}\text{ }\Rightarrow \text{ }lm={ {f}^{2}}\text{ }\left( 引理 \right)\Rightarrow \text{ }\left\{ \begin{aligned} & l={ {r}^{2}} \\ & m={ {s}^{2}} \\ & f=rs \\ \end{aligned} \right.,\text{ }r,s\in { {\mathbb{Z}}_{>0}},\text{ }\gcd \left( r,s \right)=1 2lm=b=2c=2f2  lm=f2 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值