一般高次同余式(组)的解法总结以及对应理论的传送门

本文详细介绍了高次同余式(组)的解法,包括求解步骤和理论依据。首先,通过分解模数的素因子转换同余式,接着采用带余除法定理进行降次,再利用迭代算法逐步求解,最后运用孙子定理得出解。文中引用了相关博客单篇中的定理和理论,为每个步骤提供了理论支撑。
摘要由CSDN通过智能技术生成

一般高次同余式(组)的解法总结


  设 f i ( x ) { {f}_{i}}\left( x \right) fi(x)是一般的高次整系数多项式, m i ∈ Z ≥ 1 { {m}_{i}}\in { {\mathbb{Z}}_{\ge 1}} miZ1 i = 1 , 2 , ⋯   , k i=1,2,\cdots ,k i=1,2,,k。欲求解同余式组
{ f 1 ( x ) ≡ 0     m o d   m 1 ⋮ f k ( x ) ≡ 0     m o d   m k \left\{ \begin{matrix} { {f}_{1}}\left( x \right)\equiv 0\text{ }\bmod { {m}_{1}} \\ \vdots \\ { {f}_{k}}\left( x \right)\equiv 0\text{ }\bmod { {m}_{k}} \\ \end{matrix} \right. f1(x)0 modm1fk(x)0 modmk
解法总结如下。

步骤一
  分别求解每一个 f i ( x ) ≡ 0     m o d   m i ,   i = 1 , 2 , ⋯   , k { {f}_{i}}\left( x \right)\equiv 0\text{ }\bmod { {m}_{i}},\text{ }i=1,2,\cdots ,k fi(x)0 modmi, i=1,2,,k。现选择其中的一个同余式 f ( x ) ≡ 0     m o d   m f\left( x \right)\equiv 0\text{ }\bmod m f(x)0 modm
作为样例进行求解。

步骤二
  对 m m m进行素因子分解得到
m = p 1 e 1 ⋯ p n e n m={ {p}_{1}}^{ { {e}_{1}}}\cdots { {p}_{n}}^{ { {e}_{n}}} m=p1e1pnen
于是将原同余式 f ( x ) ≡ 0     m o d   m f\left( x \right)\equiv 0\text{ }\bmod m f(x)0 modm转化为等价的同余式组
{ f ( x ) ≡ 0     m o d   p 1 e 1 ⋮ f ( x ) ≡ 0     m o d   p n e n \left\{ \begin{matrix} f\left( x \right)\equiv 0\text{ }\bmod { {p}_{1}}^{ { {e}_{1}}} \\ \vdots \\ f\left( x \right)\equiv 0\text{ }\bmod { {p}_{n}}^{ { {e}_{n}}} \\ \end{matrix} \right. f(x)0 modp1e1f(x)0 modpnen
(相关理论支撑参见博文《高次同余式的解数和解法》定理1
然后分别求解里面的每一个同余式。现选择其中的一个同余式
f ( x ) = 0     m o d   p e f\left( x \right)=0\text{ }\bmod { {p}^{e}} f(x)=0 modpe
作为样例进行求解。

步骤三
  若 deg ⁡ f ( x ) ≥ p \deg f\left( x \right)\ge p degf(x)p,则利用多项式的带余除法对 f ( x ) f\left( x \right) f(x)进行降次
f ( x ) = ( x p − x ) q ( x ) + r ( x ) f\left( x \right)=\left( { {x}^{p}}-x \right)q\left( x \right)+r\left( x \right) f(x)=(xpx)q(x)+r(x)
得到等价的同余式 r ( x ) ≡ f ( x ) ≡ 0     m o d   p r\left( x \right)\equiv f\left( x \right)\equiv 0\text{ }\bmod p r(x)f(x)0 modp
(相关理论支撑和降次操作过程参见博文《素数模同余式次数与其解数的关系》定理2定理1证明过程

  若 deg ⁡ f ( x ) ≤ p − 1 \deg f\left( x \right)\le p-1 degf(x)p1,则可直接令 r ( x ) = f ( x ) r\left( x \right)=f\left( x \right) r(x)=f(x)

  然后用穷举法求解 r ( x ) ≡ 0     m o d   p r\left( x \right)\equiv 0\text{ }\bmod p r(x)0 modp(对特殊的 r ( x ) r\left( x \right) r(x),有更简便的方法)。

步骤四(最多共需要迭代使用 e − 1 e-1 e1次)
  通过迭代算法由 r ( x ) ≡ 0     m o d   p r\left( x \right)\equiv 0\text{ }\bmod p

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值