Legendre符号的相关引理和部分计算性质的证明

索引

引理(Gauss):设 p p p是奇素数, a ∈ Z a\in \mathbb{Z} aZ gcd ⁡ ( a , p ) = 1 \gcd \left( a,p \right)=1 gcd(a,p)=1 ∀ k ∈ Z & 1 ≤ k ≤ p − 1 2 \forall k\in \mathbb{Z}\And 1\le k\le \frac{p-1}{2} kZ&1k2p1,设 r k ∈ Z ,   0 ≤ r k < p { {r}_{k}}\in \mathbb{Z},\text{ }0\le { {r}_{k}}<p rkZ, 0rk<p a k ≡ r k     m o d   p ak\equiv { {r}_{k}}\text{ }\bmod p akrk modp,则有 ( a p ) = ( − 1 ) m \left( \frac{a}{p} \right)={ {\left( -1 \right)}^{m}} (pa)=(1)m,其中 m m m是大于 p 2 \frac{p}{2} 2p r k { {r}_{k}} rk的个数。

证明

  1. 第一步,我们指出, ∀ k ,   a k ≡ 0     m o d   p \forall k,\text{ }ak\cancel{\equiv }0\text{ }\bmod p k, ak 0 modp
    事实上有推理
    p 是 素 数 ,   gcd ⁡ ( a , p ) = 1   ⇒   p ∣ a   ⇒   a ≡ 0     m o d   p p 是 素 数 ,   1 ≤ k ≤ p − 1 2   ⇒   gcd ⁡ ( k , p ) = 1   ⇒   p ∣ k   ⇒   k ≡ 0     m o d   p \begin{aligned} & p是素数,\text{ }\gcd \left( a,p \right)=1\text{ }\Rightarrow \text{ }p\cancel{|}a\text{ }\Rightarrow \text{ }a\cancel{\equiv }0\text{ }\bmod p \\ & p是素数,\text{ }1\le k\le \frac{p-1}{2}\text{ }\Rightarrow \text{ }\gcd \left( k,p \right)=1\text{ }\Rightarrow \text{ }p\cancel{|}k\text{ }\Rightarrow \text{ }k\cancel{\equiv }0\text{ }\bmod p \\ \end{aligned} p, gcd(a,p)=1  p a  a 0 modpp, 1k2p1  gcd(k,p)=1  p k  k 0 modp
    因此有 a k ≡ 0     m o d   p ak\cancel{\equiv }0\text{ }\bmod p ak 0 modp,也蕴含了 ∀ k ,   r k ≠ 0 \forall k,\text{ }{ {r}_{k}}\ne 0 k, rk=0

  2. 第二步,由于 p p p是奇数, p 2 ∉ Z \frac{p}{2}\notin \mathbb{Z} 2p/Z,因此不存在 r k = p 2 { {r}_{k}}=\frac{p}{2} rk=2p。又由上述可将 r k { {r}_{k}} rk的范围缩小至 0 < r k < p 0<{ {r}_{k}}<p 0<rk<p,因此可将全体 r k { {r}_{k}} rk划分为 A ⋃ B A\bigcup B AB,其中
    A = { r k : 0 < r k < p 2 } = { a 1 , ⋯   , a t } , B = { r k : p 2 < r k < p } = { b 1 , ⋯   , b m } , A ⋂ B = ∅ , \begin{aligned} & A=\left\{ { {r}_{k}}:0<{ {r}_{k}}<\frac{p}{2} \right\}=\left\{ { {a}_{1}},\cdots ,{ {a}_{t}} \right\}, \\ & B=\left\{ { {r}_{k}}:\frac{p}{2}<{ {r}_{k}}<p \right\}=\left\{ { {b}_{1}},\cdots ,{ {b}_{m}} \right\}, \\ & A\bigcap B=\varnothing , \\ \end{aligned} A={ rk:0<rk<2p}={ a1,,at},B={ rk:2p<rk<p}={ b1,,bm},AB=,

  3. 第三步,设 a k 1 ≡ r 1     m o d   p ,   a k 2 ≡ r 2     m o d   p a{ {k}_{1}}\equiv { {r}_{1}}\text{ }\bmod p,\text{ }a{ {k}_{2}}\equiv { {r}_{2}}\text{ }\bmod p ak1r1 modp, ak2r2 modp,我们指出有 r 1 + r 2 ≠ p { {r}_{1}}+{ {r}_{2}}\ne p r1+r2=p
    事实上,若 r 1 + r 2 = p { {r}_{1}}+{ {r}_{2}}=p r1+r2=p,则有 a k 1 + a k 2 ≡ r 1 + r 2 = p ≡ 0     m o d   p a{ {k}_{1}}+a{ {k}_{2}}\equiv { {r}_{1}}+{ {r}_{2}}=p\equiv 0\text{ }\bmod p ak1+ak2r1+r2=p0 modp
    a ( k 1 + k 2 ) ≡ 0     m o d   p a\left( { {k}_{1}}+{ {k}_{2}} \right)\equiv 0\text{ }\bmod p a(k1+k2)0 modp
    p p p是素数, gcd ⁡ ( a , p ) = 1 \gcd \left( a,p \right)=1 gcd(a,p)=1,因而 p ∣ a ,   a ≡ 0     m o d   p p\cancel{|}a,\text{ }a\cancel{\equiv }0\text{ }\bmod p p a, a 0 modp,因此有
    k 1 + k 2 ≡ 0     m o d   p { {k}_{1}}+{ {k}_{2}}\equiv 0\text{ }\bmod p k1+k20 modp
    但这与 2 ≤ k 1 + k 2 ≤ p − 1 2\le { {k}_{1}}+{ {k}_{2}}\le p-1 2k1+k2p1矛盾。
    因此令 C = { c = p − b : b ∈ B } C=\left\{ c=p-b:b\in B \right\} C={ c=pb:bB},则有 A ⋂ C = ∅ A\bigcap C=\varnothing AC=,且 ∀ c ∈ C \forall c\in C cC 0 < c < p 2 0<c<\frac{p}{2} 0<c<2p

  4. 第四步,我们也指出 ∀ k 1 ≠ k 2 ,   a k 1 ≡ a k 2   m o d   p \forall { {k}_{1}}\ne { {k}_{2}},\text{ }a{ {k}_{1}}\cancel{\equiv }a{ {k}_{2}}\bmod p k1=k2, ak1 ak2modp
    事实上有
    { k 1 ≠ k 2 ⇒ k 1 − k 2 ≠ 0 1 ≤ k 1 , k 2 ≤ p − 1 2 ⇒ 0 ≤ k 1 − k 2 ≤ p − 3 2 < p   ⇒   k 1 − k 2 ≡ 0     m o d   p \left\{ \begin{aligned} & { {k}_{1}}\ne { {k}_{2}}\Rightarrow { {k}_{1}}-{ {k}_{2}}\ne 0 \\ & 1\le { {k}_{1}},{ {k}_{2}}\le \frac{p-1}{2}\Rightarrow 0\le { {k}_{1}}-{ {k}_{2}}\le \frac{p-3}{2}<p \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{ {k}_{1}}-{ {k}_{2}}\cancel{\equiv }0\text{ }\bmod p k1=k2k1k2=01k1,k22p10k1k22p3<p  k1k2 0 modp
    gcd ⁡ ( a , p ) = 1 \gcd \left( a,p \right)=1 gcd(a,p)=1 p p p是素数,因此 p ∣ a   ⇒   a ≡ 0     m o d   p p\cancel{|}a\text{ }\Rightarrow \text{ }a\cancel{\equiv }0\text{ }\bmod p p a  a 0 modp
    因此有
    a ( k 1 − k 2 ) ≡ 0     m o d   p   ⇔   a k 1 ≡ a k 2     m o d   p a\left( { {k}_{1}}-{ {k}_{2}} \right)\cancel{\equiv }0\text{ }\bmod p\text{ }\Leftrightarrow \text{ }a{ {k}_{1}}\cancel{\equiv }a{ {k}_{2}}\text{ }\bmod p a(k1k2) 0 modp  ak1 ak2 modp
    因此有 ∣ A ∣ + ∣ C ∣ = ∣ A ∣ + ∣ B ∣ = t + m = p − 1 2 \left| A \right|+\left| C \right|=\left| A \right|+\left| B \right|=t+m=\frac{p-1}{2} A+C=A+B=t+m=2p1

  5. 基于上述几步的结论,有以下推理
    { A ⋂ C = ∅ ∣ A ∣ + ∣ C ∣ = p − 1 2 ∀ a ∈ A ,   ∀ c ∈ C ,   0 < a , c ≤ p − 1 2 ⇒ A ⋃ C = { 1 , 2 , ⋯   , p − 1 2 } \left\{ \begin{aligned} & A\bigcap C=\varnothing \\ & \left| A \right|+\left| C \right|=\frac{p-1}{2} \\ & \forall a\in A,\text{ }\forall c\in C,\text{ }0<a,c\le \frac{p-1}{2} \\ \end{aligned} \right.\Rightarrow A\bigcup C=\left\{ 1,2,\cdots ,\frac{p-1}{2} \right\} AC=A+C=2p1aA, cC, 0<a,c2p1AC={ 1,2,,2p1}
    因此有
    ( p − 1 2 ) ! = ( ∏ i = 1 t a i ) ( ∏ j = 1 m p − b j ) ≡ ( ∏ i = 1 t a i ) ( ∏

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值