索引
- 定义
- 意义
- 若干性质
-
- 1. ( a p ) ≡ a p − 1 2 m o d p \left( \frac{a}{p} \right)\equiv { {a}^{\frac{p-1}{2}}}\text{ }\bmod p (pa)≡a2p−1 modp
- 2. ( 1 p ) = 1 \left( \frac{1}{p} \right)=1 (p1)=1
- 3. ( − 1 p ) = ( − 1 ) p − 1 2 = { 1 , p ≡ 1 m o d 4 − 1 , p ≡ 3 m o d 4 \left( \frac{-1}{p} \right)={ {\left( -1 \right)}^{\frac{p-1}{2}}}=\left\{ \begin{aligned} & 1,\text{ }p\equiv 1\text{ }\bmod 4 \\ & -1,\text{ }p\equiv 3\text{ }\bmod 4 \\ \end{aligned} \right. (p−1)=(−1)2p−1={ 1, p≡1 mod4−1, p≡3 mod4
- 4. a ≡ b m o d p ⇒ ( a p ) = ( b p ) a\equiv b\text{ }\bmod p\text{ }\Rightarrow \text{ }\left( \frac{a}{p} \right)=\left( \frac{b}{p} \right) a≡b modp ⇒ (pa)=(pb)
- 5-1. ( a b p ) = ( a p ) ( b p ) \left( \frac{ab}{p} \right)=\left( \frac{a}{p} \right)\left( \frac{b}{p} \right) (pab)=(pa)(pb)
- 5-2. ( a 1 a 2 ⋯ a n p ) = ( a 1 p ) ( a 2 p ) ⋯ ( a n p ) \left( \frac{ { {a}_{1}}{ {a}_{2}}\cdots { {a}_{n}}}{p} \right)=\left( \frac{ { {a}_{1}}}{p} \right)\left( \frac{ { {a}_{2}}}{p} \right)\cdots \left( \frac{ { {a}_{n}}}{p} \right) (pa1a2⋯an)=(pa1)(pa2)⋯(pan)
- 6. p ∣ b ⇒ ( a b 2 p ) = ( a p ) p\cancel{|}b\text{ }\Rightarrow \text{ }\left( \frac{a{ {b}^{2}}}{p} \right)=\left( \frac{a}{p} \right) p∣ b ⇒ (pab2)=(pa)
- 7. ( 2 p ) = ( − 1 ) p 2 − 1 8 = { 1 , p ≡ ± 1 m o d 8 − 1 , p ≡ ± 3 m o d 8 \left( \frac{2}{p} \right)={ {\left( -1 \right)}^{\frac{ { {p}^{2}}-1}{8}}}=\left\{ \begin{aligned} & 1,\text{ }p\equiv \pm 1\text{ }\bmod 8 \\ & -1,\text{ }p\equiv \pm 3\text{ }\bmod 8 \\ \end{aligned} \right. (p2)=(−1)8p2−1={ 1, p≡±1 mod8−1, p≡±3 mod8
- 8. 若 gcd ( a , p ) = 1 , 2 ∣ a \gcd \left( a,p \right)=1,\text{ }2\cancel{|}a gcd(a,p)=1, 2∣ a,则有 ( a p ) = ( − 1 ) ∑ k = 1 p − 1 2 [ a k p ] \left( \frac{a}{p} \right)={ {\left( -1 \right)}^{\sum\limits_{k=1}^{\frac{p-1}{2}}{\left[ \frac{ak}{p} \right]}}} (pa)=(−1)k=1∑2p−1[pak]
- 9. 若 p , q p,q p,q均为奇素数, gcd ( p , q ) = 1 \gcd \left( p,q \right)=1 gcd(p,q)=1(即奇素数 p ≠ q p \ne q p=q),则有 ( q p ) = ( − 1 ) p − 1 2 ⋅ q − 1 2 ( p q ) \left( \frac{q}{p} \right)={ {\left( -1 \right)}^{\frac{p-1}{2}\centerdot \frac{q-1}{2}}}\left( \frac{p}{q} \right) (pq)=(−1)2p−1⋅2q−1(qp)
- 命题: 存在无穷多个素数 p p p,满足 p ≡ 1 m o d 4 p\equiv 1\text{ }\bmod 4 p≡1 mod4。
定义
p p p是一个奇素数, a ∈ Z a\in \mathbb{Z} a∈Z,定义
( a p ) = { 1 , a 是 模 p 的 平 方 剩 余 且 p ∣ a − 1 , a 是 模 p 的 平 方 非 剩 余 0 , p ∣ a \left( \frac{a}{p} \right)=\left\{ \begin{aligned} & 1,\text{ }a是模p的平方剩余且p\cancel{|}a \\ & -1,\text{ }a是模p的平方非剩余 \\ & 0,\text{ }\left. p \right|a \\ \end{aligned} \right. (pa)=⎩⎪⎨⎪⎧1, a是模p的平方剩余且p∣
a−1, a是模p的平方非剩余0, p∣a
读作 a a a对 p p p的Legendre符号。
该符号必须有圆括号;该符号不是分式的意思。
注
Legendre符号的定义也可以写作
( a p ) = a p − 1 2 m o d p \left( \frac{a}{p} \right)={
{a}^{\frac{p-1}{2}}}\bmod p (pa)=a2p−1modp
其中 a p − 1 2 m o d p {
{a}^{\frac{p-1}{2}}}\bmod p a2p−1modp表示用 p p p除 a p − 1 2 {
{a}^{\frac{p-1}{2}}} a2p−1得到的余数 r ( r ∈ Z ≥ 0 , r < p ) r\left( r\in {
{\mathbb{Z}}_{\ge 0}},\text{ }r<p \right) r(r∈Z≥0, r<p)。
意义
由Legendre符号的定义可以看出,如果能够很快地算出它的值,那么就会立刻知道同余式
x 2 ≡ a m o d p , p 是 奇 素 数 , a ∈ Z {
{x}^{2}}\equiv a\text{ }\bmod p,\text{ }p是奇素数,\text{ }a\in \mathbb{Z} x2≡a modp, p是奇素数, a∈Z
是否有解。具体地说:
- 当 ( a p ) = 1 \left( \frac{a}{p} \right)=1 (pa)=1时, a a a是模 p p p的平方剩余,根据平方剩余的定义,同余式有解。
- 当 ( a p ) = 0 \left( \frac{a}{p} \right)=0 (pa)=0时,有 p ∣ a ⇒ a ≡ 0 m o d p \left. p \right|a\Rightarrow a\equiv 0\text{ }\bmod p p∣a⇒a≡0 modp,此时同余式
x 2 ≡ a ≡ 0 m o d p { {x}^{2}}\equiv a\equiv 0\text{ }\bmod p x2≡a≡0 modp
有唯一解 x ≡ 0 m o d p x\equiv 0\text{ }\bmod p x≡0 modp( p p p是素数, Z / p {\mathbb{Z}}/{p}\; Z/p是域,是整环)。 - 当 ( a p ) = − 1 \left( \frac{a}{p} \right)=-1 (pa)=−1时, a a a是模 p p p的平方非剩余,由平方非剩余的定义,同余式无解。
若干性质
1. ( a p ) ≡ a p − 1 2 m o d p \left( \frac{a}{p} \right)\equiv { {a}^{\frac{p-1}{2}}}\text{ }\bmod p (pa)≡a2p−1 modp
证明
-
若 p ∣ a p\cancel{|}a p∣ a,由于 p p p是一个素数,因此有 gcd ( a , p ) = 1 \gcd \left( a,p \right)=1 gcd(a,p)=1。此时由Euler判别法和Legendre符号的定义,有
a 是 模 p 的 平 方 剩 余 ⇒ { a p − 1 2 ≡ 1 m o d p ( a p ) = 1 ⇒ a p − 1 2 ≡ ( a p ) m o d p a 是 模 p 的 平 方 非 剩 余 ⇒ { a p − 1 2 ≡ − 1 m o d p ( a p ) = − 1 ⇒ a p − 1 2 ≡ ( a p ) m o d p \begin{aligned} & a是模p的平方剩余\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & { {a}^{\frac{p-1}{2}}}\equiv 1\text{ }\bmod p \\ & \left( \frac{a}{p} \right)=1 \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{ {a}^{\frac{p-1}{2}}}\equiv \left( \frac{a}{p} \right)\text{ }\bmod p \\ & a是模p的平方非剩余\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & { {a}^{\frac{p-1}{2}}}\equiv -1\text{ }\bmod p \\ & \left( \frac{a}{p} \right)=-1 \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{ {a}^{\frac{p-1}{2}}}\equiv \left( \frac{a}{p} \right)\text{ }\bmod p \\ \end{aligned} a是模p的平方剩余 ⇒ ⎩⎪⎨⎪⎧a2p−1≡1 modp(pa)=1 ⇒ a2p−1≡(pa) modpa是模p的平方非剩余 ⇒ ⎩⎪⎨⎪⎧a2p−1≡−1 modp(pa)=−1 ⇒ a2p−1≡(pa) modp -
若 p ∣ a \left. p \right|a p∣a,由Legendre符号的定义有
( a p ) = 0 \left( \frac{a}{p} \right)=0 (pa)=0
且此时有 a ≡ 0 m o d p a\equiv 0\text{ }\bmod p a≡0 modp,因此也有
a p − 1 2 ≡ 0 p − 1 2 = 0 m o d p { {a}^{\frac{p-1}{2}}}\equiv { {0}^{\frac{p-1}{2}}}=0\text{ }\bmod p a2p−1≡02p−1=0 modp
因此有
a p − 1 2 ≡ ( a p ) m o d p { {a}^{\frac{p-1}{2}}}\equiv \left( \frac{a}{p} \right)\text{ }\bmod p a2p−1≡(pa) modp
2. ( 1 p ) = 1 \left( \frac{1}{p} \right)=1 (p1)=1
证明
( 1 p ) ≡ 1 p − 1 2 = 1 m o d p ( 1 p ) ∈ { 0 , ± 1 } } ⇒ ( 1 p ) = 1 \left. \begin{aligned} & \left( \frac{1}{p} \right)\equiv {
{1}^{\frac{p-1}{2}}}=1\text{ }\bmod p \\ & \left( \frac{1}{p} \right)\in \left\{ 0,\pm 1 \right\} \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }\left( \frac{1}{p} \right)=1 (p1)≡12p−1=1 modp(p1)∈{
0,±1}⎭⎪⎪⎪⎬⎪⎪⎪⎫ ⇒ (p1)=1