Legendre符号的定义和基本性质

索引

定义

   p p p是一个奇素数 a ∈ Z a\in \mathbb{Z} aZ,定义
( a p ) = { 1 ,   a 是 模 p 的 平 方 剩 余 且 p ∣ a − 1 ,   a 是 模 p 的 平 方 非 剩 余 0 ,   p ∣ a \left( \frac{a}{p} \right)=\left\{ \begin{aligned} & 1,\text{ }a是模p的平方剩余且p\cancel{|}a \\ & -1,\text{ }a是模p的平方非剩余 \\ & 0,\text{ }\left. p \right|a \\ \end{aligned} \right. (pa)=1, app a1, ap0, pa
读作 a a a p p p的Legendre符号。
  该符号必须有圆括号;该符号不是分式的意思。


  Legendre符号的定义也可以写作
( a p ) = a p − 1 2   m o d   p \left( \frac{a}{p} \right)={ {a}^{\frac{p-1}{2}}}\bmod p (pa)=a2p1modp
其中 a p − 1 2   m o d   p { {a}^{\frac{p-1}{2}}}\bmod p a2p1modp表示用 p p p a p − 1 2 { {a}^{\frac{p-1}{2}}} a2p1得到的余数 r ( r ∈ Z ≥ 0 ,   r < p ) r\left( r\in { {\mathbb{Z}}_{\ge 0}},\text{ }r<p \right) r(rZ0, r<p)

意义

  由Legendre符号的定义可以看出,如果能够很快地算出它的值,那么就会立刻知道同余式
x 2 ≡ a     m o d   p ,   p 是 奇 素 数 ,   a ∈ Z { {x}^{2}}\equiv a\text{ }\bmod p,\text{ }p是奇素数,\text{ }a\in \mathbb{Z} x2a modp, p, aZ
是否有解。具体地说:

  1. ( a p ) = 1 \left( \frac{a}{p} \right)=1 (pa)=1时, a a a是模 p p p的平方剩余,根据平方剩余的定义,同余式有解。
  2. ( a p ) = 0 \left( \frac{a}{p} \right)=0 (pa)=0时,有 p ∣ a ⇒ a ≡ 0     m o d   p \left. p \right|a\Rightarrow a\equiv 0\text{ }\bmod p paa0 modp,此时同余式
    x 2 ≡ a ≡ 0     m o d   p { {x}^{2}}\equiv a\equiv 0\text{ }\bmod p x2a0 modp
    有唯一解 x ≡ 0     m o d   p x\equiv 0\text{ }\bmod p x0 modp p p p是素数, Z / p    {\mathbb{Z}}/{p}\; Z/p是域,是整环)。
  3. ( a p ) = − 1 \left( \frac{a}{p} \right)=-1 (pa)=1时, a a a是模 p p p的平方非剩余,由平方非剩余的定义,同余式无解。

若干性质

1. ( a p ) ≡ a p − 1 2     m o d   p \left( \frac{a}{p} \right)\equiv { {a}^{\frac{p-1}{2}}}\text{ }\bmod p (pa)a2p1 modp

证明

  1. p ∣ a p\cancel{|}a p a,由于 p p p是一个素数,因此有 gcd ⁡ ( a , p ) = 1 \gcd \left( a,p \right)=1 gcd(a,p)=1。此时由Euler判别法和Legendre符号的定义,有
    a 是 模 p 的 平 方 剩 余   ⇒   { a p − 1 2 ≡ 1     m o d   p ( a p ) = 1   ⇒   a p − 1 2 ≡ ( a p )     m o d   p a 是 模 p 的 平 方 非 剩 余   ⇒   { a p − 1 2 ≡ − 1     m o d   p ( a p ) = − 1   ⇒   a p − 1 2 ≡ ( a p )     m o d   p \begin{aligned} & a是模p的平方剩余\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & { {a}^{\frac{p-1}{2}}}\equiv 1\text{ }\bmod p \\ & \left( \frac{a}{p} \right)=1 \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{ {a}^{\frac{p-1}{2}}}\equiv \left( \frac{a}{p} \right)\text{ }\bmod p \\ & a是模p的平方非剩余\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & { {a}^{\frac{p-1}{2}}}\equiv -1\text{ }\bmod p \\ & \left( \frac{a}{p} \right)=-1 \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }{ {a}^{\frac{p-1}{2}}}\equiv \left( \frac{a}{p} \right)\text{ }\bmod p \\ \end{aligned} ap  a2p11 modp(pa)=1  a2p1(pa) modpap  a2p11 modp(pa)=1  a2p1(pa) modp

  2. p ∣ a \left. p \right|a pa,由Legendre符号的定义有
    ( a p ) = 0 \left( \frac{a}{p} \right)=0 (pa)=0
    且此时有 a ≡ 0     m o d   p a\equiv 0\text{ }\bmod p a0 modp,因此也有
    a p − 1 2 ≡ 0 p − 1 2 = 0     m o d   p { {a}^{\frac{p-1}{2}}}\equiv { {0}^{\frac{p-1}{2}}}=0\text{ }\bmod p a2p102p1=0 modp
    因此有
    a p − 1 2 ≡ ( a p )     m o d   p { {a}^{\frac{p-1}{2}}}\equiv \left( \frac{a}{p} \right)\text{ }\bmod p a2p1(pa) modp

2. ( 1 p ) = 1 \left( \frac{1}{p} \right)=1 (p1)=1

证明
( 1 p ) ≡ 1 p − 1 2 = 1     m o d   p ( 1 p ) ∈ { 0 , ± 1 } }   ⇒   ( 1 p ) = 1 \left. \begin{aligned} & \left( \frac{1}{p} \right)\equiv { {1}^{\frac{p-1}{2}}}=1\text{ }\bmod p \\ & \left( \frac{1}{p} \right)\in \left\{ 0,\pm 1 \right\} \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }\left( \frac{1}{p} \right)=1 (p1)12p1=1 modp(p1){ 0,±1}  (p1)=1

3. ( − 1 p ) = ( − 1 ) p − 1 2 = { 1 ,   p ≡ 1     m o d   4 − 1 ,   p ≡ 3     m o d   4 \left( \frac{-1}{p} \right)={ {\left( -1 \right)}^{\frac{p-1}{2}}}=\left\{ \begin{aligned} & 1,\text{ }p\equiv 1\text{ }\bmod 4 \\ & -1,\text{ }p\equiv 3\text{ }\bmod 4 \\ \end{aligned} \right. (p1)=(1)2p1={ 1, p1 mod41, p3 mod4

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值