数论之模m的n次剩余与非剩余 若干练习

本文通过若干例题探讨了模m的n次剩余的求解方法,包括判断同余方程是否有解以及解的个数。涉及到数论中的模运算、原根和指数等内容,并应用相关定理进行证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

本文涉及的理论可以参见博文《数论之模m的n次剩余与非剩余 理论基础》.

例题1 同余式 x 6 ≡ 5     m o d   17 { {x}^{6}}\equiv 5\text{ }\bmod 17 x65 mod17是否有解? 若有解, 求其解.

 由于
5 φ ( 17 ) gcd ⁡ ( 6 , φ ( 17 ) ) = 5 16 gcd ⁡ ( 6 , 16 ) = 5 16 2 = 5 8 = 25 4 ≡ 8 4 = 64 2 ≡ 13 2 = 169 ≡ − 1     m o d   17 , { {5}^{\frac{\varphi \left( 17 \right)}{\gcd \left( 6,\varphi \left( 17 \right) \right)}}}={ {5}^{\frac{16}{\gcd \left( 6,16 \right)}}}={ {5}^{\frac{16}{2}}}={ {5}^{8}}={ {25}^{4}}\equiv { {8}^{4}}={ {64}^{2}}\equiv { {13}^{2}}=169\equiv -1\text{ }\bmod 17, 5gcd(6,φ(17))φ(17)=5gcd(6,16)16=5216=58=25484=642132=1691 mod17,
因此由博文《数论之模m的n次剩余与非剩余 理论基础》中的定理2, 方程无解.

例题2 同余式 x 8 ≡ 23     m o d   41 { {x}^{8}}\equiv 23\text{ }\bmod 41 x823 mod41是否有解? 若有解, 求其解.

 由于
23 φ ( 41 ) gcd ⁡ ( 8 , φ ( 41 ) ) = 23 40 gcd ⁡ ( 8 , 40 ) = 23 40 8 = 23 5 = 529 2 × 23 ≡ ( − 4 ) 2 × 23 = 16 × 23 = 368 ≡ − 1     m o d   41 , \begin{aligned} & { {23}^{\frac{\varphi \left( 41 \right)}{\gcd \left( 8,\varphi \left( 41 \right) \right)}}}={ {23}^{\frac{40}{\gcd \left( 8,40 \right)}}}={ {23}^{\frac{40}{8}}}={ {23}^{5}}={ {529}^{2}}\times 23 \\ & \equiv { {\left( -4 \right)}^{2}}\times 23=16\times 23=368\equiv -1\text{ }\bmod 41, \\ \end{aligned} 23gcd(8,φ(41))φ(41)=23gcd(8,40)40=23840=235=5292×23(4)2×23=16×23=3681 mod41,
因此由博文《数论之模m的n次剩余与非剩余 理论基础》中的定理2, 方程无解.

例题3 同余式 x 12 ≡ 37     m o d   41 { {x}^{12}}\equiv 37\text{ }\bmod 41 x1237 mod41是否有解? 若有解, 求其解.

  1. 先判断方程有无解.
    法一 由于
    37 φ ( 41 ) gcd ⁡ ( 12 , φ ( 41 ) ) = 37 40 gcd ⁡ ( 12 , 40 ) = 37 40 4 = 37 10 ≡ ( − 4 ) 10 = 16 5 = 256 2 × 16 ≡ 10 2 × 16 = 1600 ≡ 1     m o d   41 , \begin{aligned} & { {37}^{\frac{\varphi \left( 41 \right)}{\gcd \left( 12,\varphi \left( 41 \right) \right)}}}={ {37}^{\frac{40}{\gcd \left( 12,40 \right)}}}={ {37}^{\frac{40}{4}}}={ {37}^{10}}\equiv { {\left( -4 \right)}^{10}}={ {16}^{5}} \\ & ={ {256}^{2}}\times 16\equiv { {10}^{2}}\times 16=1600\equiv 1\text{ }\bmod 41, \\ \end{aligned} 37

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值