索引
- 传送门
- 例题1 同余式 x 6 ≡ 5 m o d 17 { {x}^{6}}\equiv 5\text{ }\bmod 17 x6≡5 mod17是否有解? 若有解, 求其解.
- 例题2 同余式 x 8 ≡ 23 m o d 41 { {x}^{8}}\equiv 23\text{ }\bmod 41 x8≡23 mod41是否有解? 若有解, 求其解.
- 例题3 同余式 x 12 ≡ 37 m o d 41 { {x}^{12}}\equiv 37\text{ }\bmod 41 x12≡37 mod41是否有解? 若有解, 求其解.
- 例题4 求出模 41 41 41的全部 4 4 4次剩余.
- 例题5 求出模 41 41 41的既约剩余系中指数为 10 10 10的数.
- 例题6 证明 10 10 10是模 17 17 17及模 257 257 257(素数)的原根, 并由此证明把 1 17 , 1 257 \frac{1}{17},\frac{1}{257} 171,2571化成循环小数时, 循环节的长度分别是 16 16 16以及 256 256 256.
传送门
本文涉及的理论可以参见博文《数论之模m的n次剩余与非剩余 理论基础》.
例题1 同余式 x 6 ≡ 5 m o d 17 { {x}^{6}}\equiv 5\text{ }\bmod 17 x6≡5 mod17是否有解? 若有解, 求其解.
解 由于
5 φ ( 17 ) gcd ( 6 , φ ( 17 ) ) = 5 16 gcd ( 6 , 16 ) = 5 16 2 = 5 8 = 25 4 ≡ 8 4 = 64 2 ≡ 13 2 = 169 ≡ − 1 m o d 17 , {
{5}^{\frac{\varphi \left( 17 \right)}{\gcd \left( 6,\varphi \left( 17 \right) \right)}}}={
{5}^{\frac{16}{\gcd \left( 6,16 \right)}}}={
{5}^{\frac{16}{2}}}={
{5}^{8}}={
{25}^{4}}\equiv {
{8}^{4}}={
{64}^{2}}\equiv {
{13}^{2}}=169\equiv -1\text{ }\bmod 17, 5gcd(6,φ(17))φ(17)=5gcd(6,16)16=5216=58=254≡84=642≡132=169≡−1 mod17,
因此由博文《数论之模m的n次剩余与非剩余 理论基础》中的定理2, 方程无解.
例题2 同余式 x 8 ≡ 23 m o d 41 { {x}^{8}}\equiv 23\text{ }\bmod 41 x8≡23 mod41是否有解? 若有解, 求其解.
解 由于
23 φ ( 41 ) gcd ( 8 , φ ( 41 ) ) = 23 40 gcd ( 8 , 40 ) = 23 40 8 = 23 5 = 529 2 × 23 ≡ ( − 4 ) 2 × 23 = 16 × 23 = 368 ≡ − 1 m o d 41 , \begin{aligned} & {
{23}^{\frac{\varphi \left( 41 \right)}{\gcd \left( 8,\varphi \left( 41 \right) \right)}}}={
{23}^{\frac{40}{\gcd \left( 8,40 \right)}}}={
{23}^{\frac{40}{8}}}={
{23}^{5}}={
{529}^{2}}\times 23 \\ & \equiv {
{\left( -4 \right)}^{2}}\times 23=16\times 23=368\equiv -1\text{ }\bmod 41, \\ \end{aligned} 23gcd(8,φ(41))φ(41)=23gcd(8,40)40=23840=235=5292×23≡(−4)2×23=16×23=368≡−1 mod41,
因此由博文《数论之模m的n次剩余与非剩余 理论基础》中的定理2, 方程无解.
例题3 同余式 x 12 ≡ 37 m o d 41 { {x}^{12}}\equiv 37\text{ }\bmod 41 x12≡37 mod41是否有解? 若有解, 求其解.
解
-
先判断方程有无解.
法一 由于
37 φ ( 41 ) gcd ( 12 , φ ( 41 ) ) = 37 40 gcd ( 12 , 40 ) = 37 40 4 = 37 10 ≡ ( − 4 ) 10 = 16 5 = 256 2 × 16 ≡ 10 2 × 16 = 1600 ≡ 1 m o d 41 , \begin{aligned} & { {37}^{\frac{\varphi \left( 41 \right)}{\gcd \left( 12,\varphi \left( 41 \right) \right)}}}={ {37}^{\frac{40}{\gcd \left( 12,40 \right)}}}={ {37}^{\frac{40}{4}}}={ {37}^{10}}\equiv { {\left( -4 \right)}^{10}}={ {16}^{5}} \\ & ={ {256}^{2}}\times 16\equiv { {10}^{2}}\times 16=1600\equiv 1\text{ }\bmod 41, \\ \end{aligned} 37